4,113
Views
4
CrossRef citations to date
0
Altmetric
Review

Viruses and amyloids - a vicious liaison

ORCID Icon & ORCID Icon
Pages 82-104 | Received 01 Feb 2023, Accepted 18 Mar 2023, Published online: 30 Mar 2023

References

  • Choutka J, Jansari V, Hornig M, et al. Unexplained post-acute infection syndromes. Nature Med. 2022 May 01;28(5):911–923.
  • Levine KS, Leonard HL, Blauwendraat C, et al. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron. 2023 Jan 11. DOI:10.1016/j.neuron.2022.12.029.
  • Kanwar A, Selvaraju S, Esper F. Human coronavirus-HKU1 infection among adults in Cleveland, Ohio. Open Forum Infect Dis. 2017;4(2):ofx052. Spring. 10.1093/ofid/ofx052.
  • Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013 Sep;13(9):752–761.
  • Wadman M, Couzin-Frankel J, Kaiser J, et al. A rampage through the body. Science. 2020 Apr 24;368(6489):356–360.
  • Elezkurtaj S, Greuel S, Ihlow J, et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci Rep. 2021 Feb 19;11(1):4263.
  • Webb BJ, Peltan ID, Jensen P, et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study. Lancet Rheumatol. 2020 Dec;2(12):e754–763.
  • Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nature Med. 2020 Jul 01;26(7):1017–1032.
  • Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. 2020 Aug 06;383(6):590–592.
  • Qi F, Qian S, Zhang S, et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020 May 21;526(1):135–140.
  • Sahranavard M, Akhavan Rezayat A, Zamiri Bidary M, et al. Cardiac complications in COVID-19: a systematic review and meta-analysis. Arch Iran Med. 2021 Feb 1;24(2):152–163.
  • Misra S, Kolappa K, Prasad M, et al. Frequency of neurologic manifestations in COVID-19. Neurology. 2021;97(23):e2269. DOI:10.1212/WNL.0000000000012930
  • Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020 Jul 01;98(1):209–218.
  • Mao R, Qiu Y, J-S H, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020 Jul 01;5(7):667–678.
  • Drucker DJ. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metab. 2021 Mar 2;33(3):479–498.
  • Lazartigues E, Qadir M, Mauvais-Jarvis F. Endocrine Significance of SARS-CoV-2’s Reliance on ACE2. Endocrinology. 2020;161(9):bqaa108.
  • Clarke SA, Abbara A, Dhillo WS. Impact of COVID-19 on the endocrine system: a mini-review. Endocrinology. 2022;163(1):bqab203.
  • Morissette G, Flamand L. Herpesviruses and chromosomal integration. J Virol. 2010;84(23):12100–12109.
  • Quarleri J. Poliomyelitis is a current challenge: long-term sequelae and circulating vaccine-derived poliovirus. Geroscience. 2023 Apr 01;45(2):707–717.
  • Naeye RL, Blanc W. Pathogenesis of congenital rubella. JAMA. 1965;194(12):1277–1283.
  • Hirschenberger M, Hunszinger V, Sparrer KMJ. Implications of innate immunity in post-acute sequelae of non-persistent viral infections. Cells. 2021 Aug 19;10(8):2134.
  • O’sullivan O. Long-term sequelae following previous coronavirus epidemics. Clin Med (Lond). 2021 Jan;21(1):e68–70.
  • Das KM, Lee EY, Singh R, et al. Follow-up chest radiographic findings in patients with MERS-Cov after recovery. Indian J Radiol Imaging. 2017 Jul-Sep;27(3):342–349.
  • Hui DS, Wong KT, Antonio GE, et al. Long-term sequelae of SARS: physical, neuropsychiatric, and quality-of-life assessment. Hong Kong Med J. 2009 Dec;15(Suppl 8):21–23.
  • Zhang P, Li J, Liu H, et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res. 2020;8(1):8. DOI:10.1038/s41413-020-0084-5
  • Lam M-B, Wing Y-K, MW-M Y, et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Internal Med. 2009;169(22):2142–2147. DOI:10.1001/archinternmed.2009.384
  • Lee SH, Shin HS, Park HY, et al. Depression as a mediator of chronic fatigue and post-traumatic stress symptoms in Middle East respiratory syndrome survivors. Psychiatry Investig. 2019 Jan;16(1):59–64.
  • Di Gennaro F, Belati A, Tulone O, et al. Incidence of long COVID-19 in people with previous SARS-Cov2 infection: a systematic review and meta-analysis of 120,970 patients. Intern Emerg Med. 2022 Nov;30:1–9.
  • Buxbaum JN, Dispenzieri A, Eisenberg DS, et al. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid. 2022 Nov;29(4):1–7.
  • Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nature Rev Microbiol. 2023 03 01;21(3):133–146.
  • Rubel MS, Fedotov SA, Grizel AV, et al. Functional mammalian amyloids and amyloid-like proteins. Life (Basel). 2020 Aug 21;10(9):156.
  • Maji SK, Perrin MH, Sawaya MR, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009 Jul 17;325(5938):328–332.
  • Hewetson A, Do HQ, Myers C, et al. Functional amyloids in reproduction. Biomolecules. 2017 Jun 29;7(4):46.
  • Brunger AF, Nienhuis HLA, Bijzet J, et al. Causes of AA amyloidosis: a systematic review. Amyloid. 2020 Mar;27(1):1–12.
  • Sorić Hosman I, Kos I, Lamot L. Serum amyloid a in inflammatory rheumatic diseases: a compendious review of a renowned biomarker [Review]. Front Immunol. 2021 Feb 19;11:631299.
  • Alghamdi M. Familial Mediterranean fever, review of the literature. Clin Rheumatol. 2017 Aug;36(8):1707–1713.
  • Tateishi Y, Yamada Y, Katsuki M, et al. Pathological review of cardiac amyloidosis using autopsy cases in a single Japanese institution. Pathol Res Pract. 2021 Nov;227:153635.
  • Weisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem. 2017;82:405–456.
  • Benson MD, Liepnieks J, Uemichi T, et al. Hereditary renal amyloidosis associated with a mutant fibrinogen alpha-chain. Nat Genet. 1993 Mar;3(3):252–255.
  • Chapman J, Dogan A. Fibrinogen alpha amyloidosis: insights from proteomics. Expert Rev Proteomics. 2019 Sep;16(9):783–793.
  • Garnier C, Briki F, Nedelec B, et al. VLITL is a major cross-beta-sheet signal for fibrinogen Aalpha-chain frameshift variants. Blood. 2017 Dec 21;130(25):2799–2807.
  • Kranenburg O, Bouma B, Kroon-Batenburg LM, et al. Tissue-type plasminogen activator is a multiligand cross-beta structure receptor. Curr Biol. 2002 Oct 29;12(21):1833–1839.
  • Liz MA, Coelho T, Bellotti V, et al. A narrative review of the role of transthyretin in health and disease. Neurol Ther. 2020 Dec;9(2):395–402.
  • Milardi D, Gazit E, Radford SE, et al. Proteostasis of islet amyloid polypeptide: a molecular perspective of risk factors and protective strategies for type II diabetes. Chem Rev. 2021 Feb 10;121(3):1845–1893.
  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021 Apr 24;397(10284):1577–1590.
  • Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature. 2016 Nov 01;539(7628):217–226.
  • Borghammer P, Just MK, Horsager J, et al. A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson’s disease. NPJ Parkinsons Dis. 2022 Nov 30;8(1):166.
  • Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016 Nov 10;539(7628):207–216.
  • Mathis S, Goizet C, Soulages A, et al. Genetics of amyotrophic lateral sclerosis: a review. J Neurol Sci. 2019 Apr 15;399:217–226.
  • Schonfelder J, Pfeiffer PB, Pradhan T, et al. Protease resistance of ex vivo amyloid fibrils implies the proteolytic selection of disease-associated fibril morphologies. Amyloid. 2021 Dec;28(4):243–251.
  • Mangione PP, Verona G, Corazza A, et al. Plasminogen activation triggers transthyretin amyloidogenesis in vitro. J Biol Chem. 2018 Sep 14;293(37):14192–14199.
  • Yamada T, Liepnieks JJ, Kluve-Beckerman B, et al. Cathepsin B generates the most common form of amyloid a (76 Residues) as a degradation product from serum amyloid a https://doi.org/10.1111/j.1365-3083.1995.Tb03538.x. Scand J Immunol. 1995 Jan 01;41(1)):94–97.
  • Silverman SL, Cathcart ES, Skinner M, et al. The degradation of serum amyloid a protein by activated polymorphonuclear leucocytes: participation of granulocytic elastase. Immunology. 1982 Aug;46(4):737–744.
  • Garringer HJ, Murrell J, D’adamio L, et al. Modeling familial British and Danish dementia. Brain Struct Funct. 2010 Mar;214(2–3):235–244.
  • Solomon JP, Page LJ, Balch WE, et al. Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Crit Rev Biochem Mol Biol. 2012 May-Jun;47(3):282–296.
  • Uversky VN, Fink AL. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta. 2004 May 6;1698(2):131–153.
  • Rousseau F, Serrano L, Schymkowitz JW. How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol. 2006 Feb 3;355(5):1037–1047.
  • Beerten J, Jonckheere W, Rudyak S, et al. Aggregation gatekeepers modulate protein homeostasis of aggregating sequences and affect bacterial fitness. Protein Eng Des Sel. 2012 Jul;25(7):357–366.
  • Hammarstrom P, Jiang X, Hurshman AR, et al. Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A. 2002 Dec 10;4(Suppl 4):16427–16432. 99 Suppl.
  • Mead S. Prion disease genetics. Eur J Hum Genet. 2006 Mar;14(3):273–281.
  • Richardson JS, Richardson DC. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2754–2759.
  • Wright CF, Teichmann SA, Clarke J, et al. The importance of sequence diversity in the aggregation and evolution of proteins. Nature. 2005 Dec 8;438(7069):878–881.
  • Kadibalban AS, Bogumil D, Landan G, et al. DnaK-Dependent accelerated evolutionary rate in prokaryotes. Genome Biol Evol. 2016 Jun 3;8(5):1590–1599.
  • Alvarez-Ponce D, Aguilar-Rodriguez J, Fares MA. Molecular chaperones accelerate the evolution of their protein clients in Yeast. Genome Biol Evol. 2019 Aug 1;11(8):2360–2375.
  • Lachowiec J, Lemus T, Borenstein E, et al. Hsp90 promotes kinase evolution. Mol Biol Evol. 2015 Jan;32(1):91–99.
  • Tartaglia GG, Pechmann S, Dobson CM, et al. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci. 2007 May;32(5):204–206.
  • Santra M, Dill KA, de Graff Amr, et al. Proteostasis collapse is a driver of cell aging and death. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22173–22178.
  • Verma K, Verma M, Chaphalkar A, et al. Recent advances in understanding the role of proteostasis. Fac Rev. 2021 ;10:72.
  • Milo R, Phillips R. Cell biology by the numbers. New York, NY: Garland Science, Taylor & Francis Group; 2016.
  • Firth AE, Brierley I. Non-canonical translation in RNA viruses. J Gen Virol. 2012 Jul;93(Pt 7):1385–1409.
  • Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys. 2013 Mar;531(1–2):65–79.
  • Chapman MS, Liljas L. Structural folds of viral proteins. Adv Protein Chem. 2003;64:125–196.
  • Sevvana M, Klose T, Rossmann MG. Principles of virus structure. In: Bamford D Zuckerman M, editors. Encyclopedia of virology. Fourth ed. Oxford: Academic Press; 2021. pp. 257–277.
  • Langenberg T, Gallardo R, van der Kant R, et al. Thermodynamic and evolutionary coupling between the native and amyloid state of Globular proteins. Cell Rep. 2020 Apr 14;31(2):107512.
  • Johnson JE. Virus particle dynamics. Adv Protein Chem. 2003;64:197–218.
  • Canady MA, Tihova M, Hanzlik TN, et al. Large conformational changes in the maturation of a simple RNA virus, nudaurelia capensis omega virus (NomegaV). J Mol Biol. 2000 Jun 9;299(3):573–584.
  • van der Vies Sm, Gatenby AA, Georgopoulos C, et al. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature. 1994 Apr 14;368(6472):654–656.
  • Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020 May;10(5):766–788.
  • Charnley M, Islam S, Bindra GK, et al. Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nat Commun. 2022 Jun 13;13(1):3387.
  • Tayeb-Fligelman E, Cheng X, Tai C, et al. Inhibition of amyloid formation of the Nucleoprotein of SARS-CoV-2. bioRxiv. 2021 Mar 18.
  • Nyström S, Hammarström P. Amyloidogenesis of SARS-CoV-2 spike protein. J Am Chem Soc. 2022 May 25;144(20):8945–8950.
  • GISAD. hCoV19 variants 2023 [ cited 2023 Jan 31]. Available from: https://gisaid.org/hcov19-variants/
  • Breijyeh Z, Karaman R. Comprehensive review on alzheimer’s disease: causes and treatment. Molecules. 2020;25(24):5789. [cited. 10.3390/molecules25245789.
  • Westermark GT, Sletten K, Grubb A, et al. AA-Amyloidosis: tissue complement-specific association of various protein AA subspecies and evidence of a fourth SAA gene product [Article]. Am J Pathol. 1990;137(2):377–383.
  • Rennegarbe M, Lenter I, Schierhorn A, et al. Influence of C-terminal truncation of murine Serum amyloid a on fibril structure [Article]. Sci Rep. 2017;7(1).
  • Appleby BS, Shetty S, Elkasaby M. Genetic aspects of human prion diseases. Front Neurol. 2022;13:1003056.
  • Chevalier C, Al Bazzal A, Vidic J, et al. PB1-F2 influenza a virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments. J Biol Chem. 2010 Apr 23;285(17):13233–13243.
  • Chevalier C, Leymarie O, Sedano L, et al. PB1-F2 amyloid-like fibers correlate with proinflammatory signaling and respiratory distress in influenza-infected mice. J Biol Chem. 2021 Jul;297(1):100885.
  • Shaldzhyan AA, Zabrodskaya YA, Baranovskaya IL, et al. Old dog, new tricks: influenza a virus NS1 and in vitro fibrillogenesis. Biochimie. 2021 Nov;190:50–56.
  • Health NIo. Guillain-Barré syndrome fact sheet NINDS.NIH.gov: nIH; 2022 [cited 2022 dec 29]. Available from: https://www.ninds.nih.gov/guillain-barre-syndrome-fact-sheet
  • Mohd Ropidi MI, Khazali AS, Nor Rashid N, et al. Endoplasmic reticulum: a focal point of Zika virus infection. J Biomed Sci. 2020 Jan 20;27(1):27.
  • Saumya KU, Gadhave K, Kumar A, et al. Zika virus capsid anchor forms cytotoxic amyloid-like fibrils. Virology. 2021 Aug;560:8–16.
  • Chimelli L, Melo ASO, Avvad-Portari E, et al. The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathol. 2017 Jun;133(6):983–999.
  • Munoz LS, Parra B, Pardo CA, et al. Neurological Implications of Zika virus infection in adults. J Infect Dis. 2017 Dec 16;216(suppl_10):S897–905.
  • Harpaz R, Ortega-Sanchez IR, Seward JF, et al. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2008 Jun 6;57(RR–5):1–4.
  • Watson P. Postherpetic neuralgia. Am Fam Physician. 2011 Sep 15;84(6):690–692.
  • Becerra JC, Sieber R, Martinetti G, et al. Infection of the central nervous system caused by varicella zoster virus reactivation: a retrospective case series study. Int J Infect Dis. 2013 Jul;17(7):e529–34.
  • Nagel MA, Cohrs RJ, Mahalingam R, et al. The varicella zoster virus vasculopathies: clinical, CSF, imaging, and virologic features. Neurology. 2008 Mar 11;70(11):853–860.
  • Steain M, Baker M, Pham CLL, et al. Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death. PLOS Pathog. 2020 Jul;16(7):e1008473.
  • WHO. Herpes simplex virus. Fact sheets: WHO; 2022.
  • Croen KD, Ostrove JM, Dragovic LJ, et al. Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N Engl J Med. 1987 Dec 3;317(23):1427–1432.
  • McGraw HM, Awasthi S, Wojcechowskyj JA, et al. Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol. 2009 Sep;83(17):8315–8326.
  • Lee GH, Kim J, Kim HW, et al. Herpes simplex viruses (1 and 2) and varicella-zoster virus infections in an adult population with aseptic meningitis or encephalitis: a nine-year retrospective clinical study. Medicine (Baltimore). 2021 Nov 19;100(46):e27856.
  • Shanmugam N, Baker M, Sanz-Hernandez M, et al. Herpes simplex virus encoded ICP6 protein forms functional amyloid assemblies with necroptosis-associated host proteins. Biophys Chem. 2021 Feb;269:106524.
  • Singh VK, Kumar S, Tapryal S. Aggregation propensities of herpes simplex virus-1 proteins and derived peptides. An in silico and in vitro Analysis ACS Omega. 2020 Jun 9;5(22):12964–12973.
  • Chen VC, Wu SI, Huang KY, et al. Herpes zoster and dementia: a nationwide population-based cohort study. J Clin Psychiatry. 2018 Jan/Feb;79(1):16m11312.
  • Tsai M-C, Cheng W-L, Sheu J-J, et al. Increased risk of dementia following herpes zoster ophthalmicus. PLoS ONE. 2017;12(11):e0188490. DOI:10.1371/journal.pone.0188490
  • Tzeng N-S, Chung C-H, Lin F-H, et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections—a nationwide, population-based cohort study in Taiwan. Neurotherapeutics. 2018 Apr 01;15(2):417–429.
  • Bae S, Yun S-C, Kim M-C, et al. Association of herpes zoster with dementia and effect of antiviral therapy on dementia: a population-based cohort study. Eur Arch Psychiatry Clin Neurosci. 2021 Aug 01;271(5):987–997.
  • Lopatko Lindman K, Hemmingsson E-S, Weidung B, et al. Herpesvirus infections, antiviral treatment, and the risk of dementia—a registry-based cohort study in Sweden. Alzheimer’s & Dementia: Transl Res Clin Interventions. 2021 Jan 01;7(1):e12119. https://doi.org/10.1002/trc2.12119
  • Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol. 2009 Jan;217(1):131–138.
  • Ezzat K, Pernemalm M, Pålsson S, et al. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nat Commun. 2019 May 27;10(1):2331.
  • Christ W, Kapell S, Mermelekas G, et al. SARS-CoV-2 and HSV-1 induce amyloid aggregation in human CSF. bioRxiv. 2022 Sep 15. 508120.
  • Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis. 2013 Nov;13(11):976–986.
  • Fulop T, Witkowski JM, Larbi A, et al. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer’s disease? J Neurovirol. 2019 Oct;25(5):634–647.
  • Zeinolabediny Y, Caccuri F, Colombo L, et al. HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders. Sci Rep. 2017 Sep 4;7(1):10313.
  • Joly V, Jidar K, Tatay M, et al. Enfuvirtide: from basic investigations to current clinical use. Expert Opin Pharmacother. 2010 Nov;11(16):2701–2713.
  • Naujokas A, Vidal CI, Mercer SE, et al. A novel form of amyloid deposited at the site of enfuvirtide injection. J Cutan Pathol. 2012 Feb;39(2):220–221. quiz 219. DOI:10.1111/j.1600-0560.2012.01865_2.x
  • Michiels E, Rousseau F, Schymkowitz J. Mechanisms and therapeutic potential of interactions between human amyloids and viruses. Cell Mol Life Sci. 2021 Mar 01;78(6):2485–2501.
  • Munch J, Rucker E, Standker L, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell. 2007 Dec 14;131(6):1059–1071.
  • Roan NR, Müller JA, Liu H, et al. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host & Microbe. 2011 Dec 15;10(6):541–550.
  • Roan NR, Sandi-Monroy N, Kohgadai N, et al. Semen amyloids participate in spermatozoa selection and clearance. Elife. 2017 Jun 27;6:e24888.
  • Thorson A, Formenty P, Lofthouse C, et al. Systematic review of the literature on viral persistence and sexual transmission from recovered Ebola survivors: evidence and recommendations. BMJ Open. 2016 Jan 7;6(1):e008859.
  • Bart SM, Cohen C, Dye JM, et al. Enhancement of Ebola virus infection by seminal amyloid fibrils. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7410–7415.
  • Kirti S, Patel K, Das S, et al. Amyloid fibrils with positive charge enhance retroviral transduction in mammalian cells. ACS Bio Sci Eng. 2019 Jan 14;5(1):126–138.
  • van Niel G, Carter DRF, Clayton DRF, et al. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022 May 01;23(5):369–382.
  • Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019 Jan;21(1):9–17.
  • Mangeot P-E, Dollet S, Girard M, et al. Protein transfer into human cells by VSV-G-induced nanovesicles. Mol Ther. 2011 Sep 01;19(9):1656–1666.
  • Meyer C, Losacco J, Stickney Z, et al. Pseudotyping exosomes for enhanced protein delivery in mammalian cells. Int J Nanomedicine. 2017 ;12:3153–3170.
  • Vaillant A. HBsAg, subviral particles, and their clearance in establishing a functional cure of chronic hepatitis B virus infection. ACS Infect Dis. 2021 Jun 11;7(6):1351–1368.
  • Liu S, Hossinger A, Heumuller SE, et al. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat Commun. 2021 Oct 19;12(1):5739.
  • Geis FK, Goff SP. Silencing and transcriptional regulation of endogenous retroviruses: an overview. Viruses. 2020;12(8):884.
  • Küry P, Nath A, Créange A, et al. Human endogenous retroviruses in neurological diseases. Trends Mol Med. 2018 Apr 01;24(4):379–394.
  • Liu S, Heumüller S-E, Hossinger A, et al. Endogenous retroviruses promote prion-like spreading of proteopathic seeds. bioRxiv. 2022 May 06. 490866.
  • Stone PJ, Campistol JM, Abraham CR, et al. Neutrophil proteases associated with amyloid fibrils. Biochem Biophys Res Commun. 1993 Nov 30;197(1):130–136.
  • Azevedo EP, Guimaraes-Costa AB, Torezani GS, et al. Amyloid fibrils trigger the release of neutrophil extracellular traps (NETs), causing fibril fragmentation by NET-associated elastase. J Biol Chem. 2012 Oct 26;287(44):37206–37218.
  • Sinha N, Thakur AK. Likelihood of amyloid formation in COVID-19-induced ARDS. Trends Microbiol. 2021 Nov;29(11):967–969.
  • Russe-Russe JR, Abramowitz C, Pellegrini JR, et al. COVID-19 exposure unmasking systemic amyloidosis with hepatic predominance. Cureus. 2022 Nov;14(11):e31092.
  • Galkin AP. Hypothesis: aA amyloidosis is a factor causing systemic complications after coronavirus disease. Prion. 2021 Dec;15(1):53–55.
  • Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020 Aug;77(2):198–209.
  • Bois MC, Boire NA, Layman AJ, et al. COVID-19-associated nonocclusive fibrin microthrombi in the heart. Circulation. 2021 Jan 19;143(3):230–243.
  • Mizurini DM, Hottz ED, Bozza PT, et al. Fundamentals in Covid-19-associated thrombosis: molecular and cellular aspects. Front Cardiovasc Med. 2021 ;8:785738.
  • Lewis E, Fine N, Miller RJH, et al. Amyloidosis and COVID-19: experience from an amyloid program in Canada. Ann Hematol. 2022 Oct;101(10):2307–2315.
  • Banerjee M, Pal R, Dutta S. Risk of incident diabetes post-COVID-19: a systematic review and meta-analysis. Prim Care Diabetes. 2022 Aug;16(4):591–593.
  • Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022 Dec;612(7941):758–763.
  • Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022 Nov;28(11):2406–2415.
  • Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022 Apr;604(7907):697–707.
  • Priemer DS, Rhodes CH, Karlovich E, et al. Abeta Deposits in the neocortex of adult and infant hypoxic brains, including in cases of COVID-19. J Neuropathol Exp Neurol. 2022 Nov 16;81(12):988–995.
  • Wang L, Davis PB, Volkow ND, et al. Association of COVID-19 with new-onset Alzheimer’s Disease. J Alzheimers Dis. 2022;89(2):411–414. DOI:10.3233/JAD-220717
  • Klug GM, Wand H, Simpson M, et al. Intensity of human prion disease surveillance predicts observed disease incidence. J Neurol Neurosurg Psychiatry. 2013 Dec;84(12):1372–1377.
  • Young MJ, O’hare M, Matiello M, et al. Creutzfeldt-Jakob disease in a man with COVID-19: sARS-CoV-2-accelerated neurodegeneration? Brain Behav Immun. 2020 Oct;89:601–603.
  • Tayyebi G, Malakouti SK, Shariati B, et al. COVID-19-associated encephalitis or Creutzfeldt–Jakob disease: a case report. Neurodegener Dis Manag. 2022 Feb;12(1):29–34.
  • Olivo S, Furlanis G, Buoite Stella A, et al. Rapidly evolving Creutzfeldt-Jakob disease in COVID-19: from early status epilepticus to fatal outcome. Acta Neurol Belg. 2022 Jul 19:1–4. doi10.1007/s13760-022-02023-x.
  • Bernardini A, Gigli GL, Janes F, et al. Creutzfeldt-Jakob disease after COVID-19: infection-induced prion protein misfolding? A case report. Prion. 2022 Dec;16(1):78–83.
  • Ciolac D, Racila R, Duarte C, et al. Clinical and radiological deterioration in a case of creutzfeldt-jakob disease following SARS-CoV-2 Infection: hints to accelerated age-dependent neurodegeneration. Biomedicines. 2021 Nov 19;9(11):1730.
  • Ali SS, Mumtaz A, Qamar MA, et al. New-onset parkinsonism as a Covid-19 infection sequela: a systematic review and meta-analysis. Ann Med Surg (Lond). 2022 Aug;80:104281.
  • Mörz M. A case report: multifocal necrotizing encephalitis and myocarditis after BNT162b2 mRNA vaccination against COVID-19. Vaccines. 2022;10(10):1651. [cited. 10.3390/vaccines10101651.
  • Li X, Bedlack R. COVID-19-accelerated disease progression in two patients with amyotrophic lateral sclerosis. Muscle Nerve. 2021 Sep;64(3):E13–15.
  • Yamada M. Cerebral amyloid angiopathy: an overview. Neuropathology. 2000 Mar;20(1):8–22.
  • Wagner J, Degenhardt K, Veit M, et al. Medin co-aggregates with vascular amyloid-beta in Alzheimer’s disease. Nature. 2022 Dec;612(7938):123–131.
  • Alexandrescu AT. Amyloid accomplices and enforcers. Protein Sci. 2005 Jan;14(1):1–12.
  • Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive care Med. 2020 Jun;46(6):1089–1098.
  • Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J. 2022 Feb 17;479(4):537–559.
  • Whyte CS, Simpson M, Morrow GB, et al. The suboptimal fibrinolytic response in COVID-19 is dictated by high PAI-1. J Thromb Haemost. 2022 Oct;20(10):2394–2406.
  • Hammarstrom P. The bloody path of amyloids and prions. J Thromb Haemost. 2007 Jun;5(6):1136–1138.
  • Mumford AD, O’donnell J, Gillmore JD, et al. Bleeding symptoms and coagulation abnormalities in 337 patients with AL-amyloidosis. Br J Haematol. 2000 Aug;110(2):454–460.
  • Kos CA, Ward JE, Malek K, et al. Association of acquired von Willebrand syndrome with AL amyloidosis. Am J Hematol. 2007 May;82(5):363–367.
  • Emori Y, Sakugawa M, Niiya K, et al. Life-threatening bleeding and acquired factor V deficiency associated with primary systemic amyloidosis. Blood Coagul Fibrinolysis. 2002 Sep;13(6):555–559.
  • Bouma B, Maas C, Hazenberg BP, et al. Increased plasmin-alpha2-antiplasmin levels indicate activation of the fibrinolytic system in systemic amyloidoses. J Thromb Haemost. 2007 Jun;5(6):1139–1142.
  • Reish NJ, Jamshidi P, Stamm B, et al. Multiple cerebral hemorrhages in a patient receiving lecanemab and treated with t-PA for stroke. N Engl J Med. 2023 Jan 4;388(5):478–479.
  • Y-C S, Riesbeck K. Chapter 33 - Vitronectin. In: Barnum S, and Schein T, editors. The complement FactsBook. Second ed. Cambridge, Massachusetts, USA: Academic Press; 2018. pp. 351–360.
  • Winter M, Tholey A, Kruger S, et al. MALDI-mass spectrometry imaging identifies vitronectin as a common constituent of amyloid deposits. J Histochem Cytochem. 2015 Oct;63(10):772–779.
  • Amraei R, Xia C, Olejnik J, et al. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi :10.1073/pnas.2113874119.
  • Rocken C, Tautenhahn J, Buhling F, et al. Prevalence and pathology of amyloid in atherosclerotic arteries. Arterioscler Thromb Vasc Biol. 2006 Mar;26(3):676–677.
  • Westermark P, Mucchiano G, Marthin T, et al. Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am J Pathol. 1995 12 01;147(5):1186–1192.
  • Liang W, Ward LJ, Karlsson H, et al. Distinctive proteomic profiles among different regions of human carotid plaques in men and women. Sci Rep. 2016 May 20;6(1):26231.
  • Stakhneva EM, Meshcheryakova IA, Demidov EA, et al. A proteomic study of atherosclerotic plaques in men with coronary atherosclerosis. Diagn (Basel). 2019 Nov 7;9(4):177.
  • Das M, Gursky O. Amyloid-forming properties of human apolipoproteins: sequence analyses and structural insights. Adv Exp Med Biol. 2015;855:175–211.
  • Kruger A, Vlok M, Turner S, et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc Diabetol. 2022 Sep 21;21(1):190.
  • Pretorius E, Vlok M, Venter C, et al. Persistent clotting protein pathology in long COVID/Post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol. 2021 Aug 23;20(1):172.
  • Nobel_Prize_Outreach. The nobel prize in physiology or medicine;1976 [cited 2023 Mar 14]. Available from: https://www.nobelprize.org/prizes/medicine/1976/summary/
  • Guo W, Deguise J, Tian Y, et al. Profiling COVID-19 vaccine adverse events by statistical and ontological analysis of VAERS case reports [Original Research]. Front Pharmacol. 2022 Jun 24;13:13.
  • Fraiman J, Erviti J, Jones M, et al. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022 Sep 22;40(40):5798–5805.