1,613
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Differentiated cultures of an immortalized human neural progenitor cell line do not replicate prions despite PrPC overexpression

ORCID Icon, , , & ORCID Icon
Pages 116-132 | Received 15 Feb 2023, Accepted 04 Apr 2023, Published online: 02 May 2023

References

  • Ritchie DL, Ironside JW. Neuropathology of human prion diseases. Prog Mol Biol Transl Sci. 2017;150:319–339.
  • Orge L, Lima C, Machado C, et al. Neuropathology of animal prion diseases. Biomolecules. 2021;11(3):466. DOI:10.3390/biom11030466
  • Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95(23):13363–13383.
  • Marín-Moreno A, Fernández-Borges N, Espinosa JC, et al. Transmission and replication of prions. Prog Mol Biol Transl Sci. 2017;150:181–201.
  • Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res. 2022;392(1):113–133.
  • Igel-Egalon A, Béringue V, Rezaei H, et al. Prion strains and transmission barrier phenomena. Pathogens. 2018;7(1):5. DOI:10.3390/pathogens7010005
  • Watts JC, Prusiner SB. Mouse models for studying the formation and propagation of prions. J Biol Chem. 2014;289(29):19841–19849.
  • Marín-Moreno A, Espinosa JC, Torres JM. Transgenic mouse models for the study of prion diseases. Prog Mol Biol Transl Sci. 2020;175:147–177.
  • Arshad H, Bourkas MEC, Watts JC. The utility of bank voles for studying prion disease. Prog Mol Biol Transl Sci. 2020;175:179–211.
  • Arshad H, Watts JC. Genetically engineered cellular models of prion propagation. Cell Tissue Res. 2022;392(1):63–80.
  • Priola SA. Cell biology approaches to studying prion diseases. Methods Mol Biol. 2017;1658:83–94.
  • Vorberg I, Chiesa R. Experimental models to study prion disease pathogenesis and identify potential therapeutic compounds. Curr Opin Pharmacol. 2019;44:28–38.
  • Islam AM T, Adlard PA, Finkelstein DI, et al. Acute neurotoxicity models of prion disease. ACS Chem Neurosci. 2018;9(3):431–445. DOI:10.1021/acschemneuro.7b00517
  • Pineau H, Sim V. Poscabilities: the application of the prion organotypic slice culture assay to neurodegenerative disease research. Biomolecules. 2020;10(7):1079.
  • Falsig J, Julius C, Margalith I, et al. A versatile prion replication assay in organotypic brain slices. Nat Neurosci. 2008;11(1):109–117. DOI:10.1038/nn2028
  • Falsig J, Sonati T, Herrmann US, et al. Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures. PLOS Pathog. 2012;8(11):e1002985. DOI:10.1371/journal.ppat.1002985
  • Giri RK, Young R, Pitstick R, et al. Prion infection of mouse neurospheres. Proc Natl Acad Sci U S A. 2006;103(10):3875–3880. DOI:10.1073/pnas.0510902103
  • Milhavet O, Casanova D, Chevallier N, et al. Neural stem cell model for prion propagation. Stem Cells. 2006;24(10):2284–2291. DOI:10.1634/stemcells.2006-0088
  • Herva ME, Relaño-Ginés A, Villa A, et al. Prion infection of differentiated neurospheres. J Neurosci Methods. 2010;188(2):270–275. DOI:10.1016/j.jneumeth.2010.02.022
  • Iwamaru Y, Takenouchi T, Imamura M, et al. Prion replication elicits cytopathic changes in differentiated neurosphere cultures. J Virol. 2013;87(15):8745–8755. DOI:10.1128/JVI.00572-13
  • Relaño-Ginès A, Gabelle A, Hamela C, et al. Prion replication occurs in endogenous adult neural stem cells and alters their neuronal fate: involvement of endogenous neural stem cells in prion diseases. PLOS Pathog. 2013;9(8):e1003485. DOI:10.1371/journal.ppat.1003485
  • Pradines E, Hernandez-Rapp J, Villa-Diaz A, et al. Pathogenic prions deviate PrPC signaling in neuronal cells and impair A-beta clearance. Cell Death Dis. 2013;4(1):e456. DOI:10.1038/cddis.2012.195
  • Collins SJ, Haigh CL. Simplified murine 3D neuronal cultures for investigating neuronal activity and neurodegeneration. Cell Biochem Biophys. 2017;75(1):3–13.
  • Iwamaru Y, Mathiason CK, Telling GC, et al. Chronic wasting disease prion infection of differentiated neurospheres. Prion. 2017;11(4):277–283. DOI:10.1080/19336896.2017.1336273
  • Choi SH, Kim YH, Hebisch M, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014;515(7526):274–278. DOI:10.1038/nature13800
  • D’Avanzo C, Sliwinski C, Wagner SL, et al. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. Faseb J. 2015;29(8):3335–3341. DOI:10.1096/fj.15-271015
  • Kim YH, Choi SH, D’Avanzo C, et al. A 3D human neural cell culture system for modeling Alzheimer’s disease. Nat Protoc. 2015;10(7):985–1006. DOI:10.1038/nprot.2015.065
  • Jorfi M, D’Avanzo C, Tanzi RE, et al. Human neurospheroid arrays for in vitro studies of alzheimer’s disease. Sci Rep. 2018;8(1):2450. DOI:10.1038/s41598-018-20436-8
  • Donato R, Miljan EA, Hines SJ, et al. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci. 2007;8(1):36. DOI:10.1186/1471-2202-8-36
  • Pai S, Verrier F, Sun H, et al. Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell. J Biomol Screen. 2012;17(9):1180–1191. DOI:10.1177/1087057112455059
  • Song Y, Subramanian K, Berberich MJ, et al. A dynamic view of the proteomic landscape during differentiation of ReNcell VM cells, an immortalized human neural progenitor line. Sci Data. 2019;6(1):190016. DOI:10.1038/sdata.2019.16
  • J-H O, Jung C-R, Lee M-O, et al. Comparative analysis of human embryonic stem cell-derived neural stem cells as an in vitro human model. Int J Mol Med. 2018;41:783–790.
  • Wan X, Wu X, Hill MA, et al. ReN VM spheroids in matrix: a neural progenitor three-dimensional in vitro model reveals DYRK1A inhibitors as potential regulators of radio-sensitivity. Biochem Biophys Res Commun. 2020;531(4):535–542. DOI:10.1016/j.bbrc.2020.07.130
  • Nierode GJ, Gopal S, Kwon P, et al. High-throughput identification of factors promoting neuronal differentiation of human neural progenitor cells in microscale 3D cell culture. Biotechnol Bioeng. 2019;116(1):168–180. DOI:10.1002/bit.26839
  • Allison WT. The intrigue is infectious: impacts of prion protein during neural development. Dev Biol. 2018;441(1):1–3.
  • Martin D, Reine F, Herzog L, et al. Prion potentiation after life-long dormancy in mice devoid of PrP. Brain Commun. 2021;3(2):fcab092. DOI:10.1093/braincomms/fcab092
  • Atkinson PH. Glycosylation of prion strains in transmissible spongiform encephalopathies. Aust Vet J. 2004;82(5):292–299.
  • Kang H-E, Bian J, Kane SJ, et al. Incomplete glycosylation during prion infection unmasks a prion protein epitope that facilitates prion detection and strain discrimination. J Biol Chem. 2020;295(30):10420–10433. DOI:10.1074/jbc.RA120.012796
  • Tuzi NL, Cancellotti E, Baybutt H, et al. Host PrP glycosylation: a major factor determining the outcome of prion infection. PLoS Biol. 2008;6(4):e100. DOI:10.1371/journal.pbio.0060100
  • Burke CM, Walsh DJ, Mark KMK, et al. Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation. PLOS Pathog. 2020;16(4):e1008495. DOI:10.1371/journal.ppat.1008495
  • Camacho MV, Telling G, Kong Q, et al. Role of prion protein glycosylation in replication of human prions by protein misfolding cyclic amplification. Lab Invest. 2019;99(11):1741–1748. DOI:10.1038/s41374-019-0282-1
  • C-W Y, Wang L-Q, Huang J-J, et al. Glycosylation significantly inhibits the aggregation of human prion protein and decreases its cytotoxicity. Sci Rep. 2018;8(1):12603. DOI:10.1038/s41598-018-30770-6
  • Sevillano AM, Aguilar-Calvo P, Kurt TD, et al. Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease. J Clin Invest. 2020;130(3):1350–1362. DOI:10.1172/JCI131564
  • Salamat MK, Dron M, Chapuis J, et al. Prion propagation in cells expressing PrP glycosylation mutants. J Virol. 2011;85(7):3077–3085. DOI:10.1128/JVI.02257-10
  • Marshall KE, Hughson A, Vascellari S, et al. PrP knockout cells expressing transmembrane PrP resist prion infection. J Virol. 2017;91(2):e01686. DOI:10.1128/JVI.01686-16
  • Klingeborn M, Race B, Meade-White KD, et al. Crucial role for prion protein membrane anchoring in the neuroinvasion and neural spread of prion infection. J Virol. 2011;85(4):1484–1494. DOI:10.1128/JVI.02167-10
  • Puig B, Altmeppen HC, Linsenmeier L, et al. GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLOS Pathog. 2019;15(1):e1007520. DOI:10.1371/journal.ppat.1007520
  • Arshad H, Patel Z, Mehrabian M, et al. The aminoglycoside G418 hinders de novo prion infection in cultured cells. J Biol Chem. 2021;297(3):101073. DOI:10.1016/j.jbc.2021.101073
  • Forloni G, Iussich S, Awan T, et al. Tetracyclines affect prion infectivity. Proc Natl Acad Sci U S A. 2002;99(16):10849–10854. DOI:10.1073/pnas.162195499
  • Adjou KT, Deslys JP, Demaimay R, et al. Probing the dynamics of prion diseases with amphotericin B. Trends Microbiol. 1997;5(1):27–31. DOI:10.1016/S0966-842X(97)81771-4
  • Demaimay R, Race R, Chesebro B. Effectiveness of polyene antibiotics in treatment of transmissible spongiform encephalopathy in transgenic mice expressing Syrian hamster PrP only in neurons. J Virol. 1999;73(4):3511–3513.
  • Adjou KT, Privat N, Demart S, et al. MS-8209, an amphotericin B analogue, delays the appearance of spongiosis, astrogliosis and PrPres accumulation in the brain of scrapie-infected hamsters. J Comput Pathol. 2000;122(1):3–8. DOI:10.1053/jcpa.1999.0338
  • Mangé A, Nishida N, Milhavet O, et al. Amphotericin B inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J Virol. 2000;74(7):3135–3140. DOI:10.1128/JVI.74.7.3135-3140.2000
  • Soler L, Caffrey P, McMahon HEM. Effects of new amphotericin analogues on the scrapie isoform of the prion protein. Biochim Biophys Acta. 2008;1780(10):1162–1167.
  • Marbiah MM, Harvey A, West BT, et al. Identification of a gene regulatory network associated with prion replication. Embo J. 2014;33(14):1527–1547. DOI:10.15252/embj.201387150
  • Krejciova Z, Alibhai J, Zhao C, et al. Human stem cell–derived astrocytes replicate human prions in a PRNP genotype–dependent manner. J Exp Med. 2017;214(12):3481–3495. DOI:10.1084/jem.20161547
  • Groveman BR, Foliaki ST, Orru CD, et al. Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathol Commun. 2019;7(1):12. DOI:10.1186/s40478-019-0742-2
  • Imamura M, Tabeta N, Kato N, et al. Heparan sulfate and heparin promote faithful prion replication in vitro by binding to normal and abnormal prion proteins in protein misfolding cyclic amplification *. J Biol Chem. 2016;291(51):26478–26486. DOI:10.1074/jbc.M116.745851
  • Orrù CD, Groveman BR, Hughson AG, et al. RT-Quic assays for prion disease detection and diagnostics. Methods Mol Biol. 2017;1658:185–203.