1,285
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Physico-chemical characterization of selected feedstocks as co-substrates for household biogas generation in Ghana

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 117-128 | Received 21 Feb 2023, Accepted 10 May 2023, Published online: 23 May 2023

References

  • Abalo, E. M., P. Peprah, J. Nyonyo, R. Ampomah-Sarpong, and W. Agyemang-Duah. 2018. “A Review of the Triple Gains of Waste and the Way Forward for Ghana.” Journal of Renewable Energy 2018: 1–12. doi:https://doi.org/10.1155/2018/9737683.
  • Afifah, U., and C. R. Priadi. 2017. “Biogas Potential from Anaerobic Co-Digestion of Faecal Sludge with Food Waste and Garden Waste.” In AIP Conference ProceedingsVol. 1826:1. AIP Publishing LLC 020032. doi:10.1063/1.4979248.
  • Ahmed, I., D. Ofori-Amanfo, E. Awuah, and F. Cobbold. 2019. “A Comprehensive Study on the Physicochemical Characteristics of Faecal Sludge in Greater Accra Region and Analysis of Its Potential Use as Feedstock for Green Energy.” Journal of Renewable Energy 2019: 1–11. doi:https://doi.org/10.1155/2019/8696058.
  • Ahring, B. K., and P. Westermann. 1985. “Sensitivity of Thermophilic Methanogenic Bacteria to Heavy Metals.” Current Microbiology 12 (5): 273–276. doi:https://doi.org/10.1007/bf01567977.
  • Altaş, L. 2009. “Inhibitory Effect of Heavy Metals on Methane-Producing Anaerobic Granular Sludge.” Journal of Hazardous Materials 162 (2–3): 1551–1556. doi:10.1016/j.jhazmat.2008.06.048.
  • American Public Health Association (APHA). 1992. Standard Methods for Examination of Water and Wastewater. 18th ed. WPCF, NY, Washington: APHA. AWWA.
  • American Public Health Association (APHA). 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, DC: American Public Health Association, American Water Work Association, Water Environment Federation.
  • Anderson, J. M., and J. S. I. Ingram. 1993. A Handbook of MethodsVol. 221 62–65. Wallingford, Oxfordshire: CAB International. doi:10.1017/s0014479700024832.
  • Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. Van Lier. 2009. “Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays.” Water Science & Technology 59 (5): 927–934. doi:10.2166/wst.2009.040.
  • Anwar, N., W. Wang, J. Zhang, Y. Li, C. Chen, G. Liu, and R. Zhang. 2016. “Effect of Sodium Salt on Anaerobic Digestion of Kitchen Waste.” Water Science & Technology 73 (8): 1865–1871. doi:10.2166/wst.2016.035.
  • AOAC, M. 1990. “Association of Official Analytical Chemists. Official Methods of Analysis.” AOAC 1: 69–90. doi:10.1093/jaoac/73.1.189.
  • Arthur, R., S. Antonczyk, S. Off, and P. A. Scherer. 2022. “Mesophilic and Thermophilic Anaerobic Digestion of Wheat Straw in a CSTR System with ‘Synthetic Manure’: Impact of Nickel and Tungsten on Methane Yields, Cell Count, and Microbiome.” Bioengineering 9 (1): 13. doi:10.3390/bioengineering9010013.
  • Arthur, R., M. F. Baidoo, G. Osei, L. Boamah, S. Kwofie, and X. Wang. 2020. “Evaluation of Potential Feedstocks for Sustainable Biogas Production in Ghana: Quantification, Energy Generation, and CO2 Abatement.” Cogent Environmental Science 6 (1): 1868162. doi:10.1080/23311843.2020.1868162.
  • Arthur, R., and P. A. Scherer. 2020. “Monitoring Dissolved Active Trace Elements in Biogas Plants Using Total Reflection X‐ray Fluorescence Spectrometry.” X-Ray Spectrometry 49 (5): 560–571. doi:https://doi.org/10.1002/xrs.3151.
  • Association of Official Analytical Chemists (AOAC). 1995. “Protein (Crude) in Animal Feed and Pet Food 984.13.” Official methods of analysis of official analytical chemists international 1: 30–31. doi:10.1016/0924-2244(95)90022-5.
  • Association of Official Analytical Chemists (AOAC). 2006. “Crude Fat in Feeds, Cereal Grains, and Forages.” Official Method 2003.05. doi:10.1002/0471740039.vec0284.
  • Bah, H., W. Zhang, S. Wu, D. Qi, S. Kizito, and R. Dong. 2014. “Evaluation of Batch Anaerobic Co-Digestion of Palm Pressed Fiber and Cattle Manure Under Mesophilic Conditions.” Waste Management 34 (11): 1984–1991. doi:10.1016/j.wasman.2014.07.015.
  • Banks, C. J., Y. Zhang, Y. Jiang, and S. Heaven. 2012. “Trace Element Requirements for Stable Food Waste Digestion at Elevated Ammonia Concentrations.” Bioresource Technology 104: 127–135. doi:10.1016/j.biortech.2011.10.068.
  • Barnes, R. B., D. Richardson, J. W. Berry, and R. L. Hood. 1945. “Flame Photometry a Rapid Analytical Procedure.” Industrial & Engineering Chemistry Analytical Edition 17 (10): 605–611. doi:10.1021/i560146a001.
  • Bodík, I., and M. Miroslavakubaská. 2014. “Possibilities of Anaerobic Fermentation of Food Waste on Municipal Wastewater Treatment Plants.” International Journal of Engineering Science and Innovative Technology 3: 523–532.
  • Boyle, W. C. 1977. “Energy Recovery from Sanitary Landfills-A Review.” Microbial Energy Conversion 119–138. doi:10.1016/b978-0-08-021791-8.50019-6.
  • Bremner, J. M. 1965. “Total Nitrogen. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties.” 9: 1149–1178. doi:10.2134/agronmonogr9.2.c32.
  • Browne, J. D., and J. D. Murphy. 2013. “Assessment of the Resource Associated with Biomethane from Food Waste.” Applied Energy 104: 170–177. doi:10.1016/j.apenergy.2012.11.017.
  • Chen, Y., and J. J. Cheng. 2007. “Effect of Potassium Inhibition on the Thermophilic Anaerobic Digestion of Swine Waste.” Water Environment Research 79 (6): 667–674. doi:10.2175/106143007x156853.
  • Chen, S., J. Zhang, and X. Wang. 2015. “Effects of Alkalinity Sources on the Stability of Anaerobic Digestion from Food Waste.” Waste Management & Research 33 (11): 1033–1040. doi:10.1177/0734242x15602965.
  • Choong, Y. Y., I. Norli, A. Z. Abdullah, and M. F. Yhaya. 2016. “Impacts of Trace Element Supplementation on the Performance of Anaerobic Digestion Process: A Critical Review.” Bioresource Technology 209: 369–379. doi:10.1016/j.biortech.2016.03.028.
  • Curry, N., and P. Pillay. 2012. “Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment.” Renewable Energy 41: 200–209. doi:10.1016/j.renene.2011.10.019.
  • Dhamodharan, K., V. Kumar, and A. S. Kalamdhad. 2015. “Effect of Different Livestock Dungs as Inoculum on Food Waste Anaerobic Digestion and Its Kinetics.” Bioresource Technology 180: 237–241. doi:10.1016/j.biortech.2014.12.066.
  • Ebner, J. H., R. A. Labatut, J. S. Lodge, A. A. Williamson, and T. A. Trabold. 2016. “Anaerobic Co-Digestion of Commercial Food Waste and Dairy Manure: Characterizing Biochemical Parameters and Synergistic Effects.” Waste Management 52: 286–294. doi:10.1016/j.wasman.2016.03.046.
  • Egwu, U., B. Uchenna-Egwu, and G. C. Ezeokpube. 2021. “Ash-Extracts from Plant Residues Can Provide Sufficient Buffering Alkalinity and Trace Elements Required to Prevent Operation Instability to Guarantee Optimum Methane Yield During Anaerobic Digestion of Agricultural Residues.” Journal of Cleaner Production 318: 128369. doi:10.1016/j.jclepro.2021.128369.
  • El-Mashad, H. M., and R. Zhang. 2010. “Biogas Production from Co-Digestion of Dairy Manure and Food Waste.” Bioresource Technology 101 (11): 4021–4028. doi:10.1016/j.biortech.2010.01.027.
  • Fagbohungbe, M. O., B. M. J. Herbert, H. Li, L. Ricketts, and K. T. Semple. 2015. “The Effect of Substrate to Inoculum Ratios on the Anaerobic Digestion of Human Faecal Material.” Environmental Technology & Innovation 3: 121–129. doi:https://doi.org/10.1016/j.eti.2015.02.005.
  • Fajobi, M. O., O. A. Lasode, A. A. Adeleke, P. P. Ikubanni, and A. O. Balogun. 2022. “Investigation of Physicochemical Characteristics of Selected Lignocellulose Biomass.” Scientific Reports 12 (1): 2918. doi:10.1038/s41598-022-07061-2.
  • Fanyin-Martin, A., W. Tamakloe, E. Antwi, J. Ami, E. Awarikabey, J. Apatti, M. Mensah, and K. Chandran. 2017. “Chemical Characterization of Faecal Sludge in the Kumasi Metropolis, Ghana.” Gates Open Research 1 (12): 12. doi:10.12688/gatesopenres.12757.1.
  • Fermoso, F. G., J. Bartacek, S. Jansen, and P. N. L. Lens. 2009. “Metal Supplementation to UASB Bioreactors: From Cell-Metal Interactions to Full-Scale Application.” The Science of the Total Environment 407 (12): 3652–3667. doi:https://doi.org/10.1016/j.scitotenv.2008.10.043.
  • Filer, J., H. H. Ding, and S. Chang. 2019. “Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research.” Water 11 (5): 921. doi:10.3390/w11050921.
  • Fisgativa, H., A. Tremier, and P. Dabert. 2016. “Characterizing the Variability of Food Waste Quality: A Need for Efficient Valorisation Through Anaerobic Digestion.” Waste Management 50: 264–274. doi:10.1016/j.wasman.2016.01.041.
  • Gao, M., L. Zhang, A. P. Florentino, and Y. Liu. 2019. “Performance of Anaerobic Treatment of Blackwater Collected from Different Toilet Flushing Systems: Can We Achieve Both Energy Recovery and Water Conservation?” Journal of Hazardous Materials 365: 44–52. doi:10.1016/j.jhazmat.2018.10.055.
  • Gashaw, A. 2014. “Anaerobic Co-Digestion of Biodegradable Municipal Solid Waste with Human Excreta for Biogas Production: A Review.” American Journal of Applied Chemistry 2 (4): 55–62. doi:10.11648/j.ajac.20140204.12.
  • Gashaw, A. 2016. “Co-Digestion of Municipal Organic Wastes with Night Soil and Cow Dung for Biogas Production: A Review.” African Journal of Biotechnology 15 (2): 32–44. doi:10.5897/ajb2015.14705.
  • Gómez-Quiroga, X., K. Aboudi, L. A. Fernández-Güelfo, C. J. Álvarez-Gallego, and L. I. Romero-García. 2020. “Thermophilic Anaerobic Co-Digestion of Exhausted Sugar Beet Pulp with Cow Manure to Boost the Performance of the Process: The Effect of Manure Proportion.” Water 13 (1): 67. doi:10.3390/w13010067.
  • Guarino, G., C. Carotenuto, F. Di Cristofaro, S. Papa, B. Morrone, and M. Minale. 2016. “Does the C/N Ratio Really Affect the Bio-Methane Yield? A Three Years Investigation of Buffalo Manure Digestion.” Chemical Engineering Transactions 49: 463–468.
  • Hagos, K., J. Zong, D. Li, C. Liu, and X. Lu. 2017. “Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives.” Renewable & Sustainable Energy Reviews 76: 1485–1496. doi:10.1016/j.rser.2016.11.184.
  • Heanes, D. L. 1984. “Determination of Total Organic‐c in Soils by an Improved Chromic Acid Digestion and Spectrophotometric Procedure.” Communications in Soil Science & Plant Analysis 15 (10): 1191–1213. doi:10.1080/00103628409367551.
  • Katz, S., and S. Jenniss. 1983. Regulatory Compliance Monitoring by Atomic Absorption Spectroscopy. Fl, USA: Verlag Chemie International.
  • Kaushal, R., S. Sandhu, and M. K. Soni. 2022. “Anaerobic Co-Digestion of Food Waste, Algae, and Cow Dung for Biogas Yield Enhancement as a Prospective Approach for Environmental Sustainability.” Sustainable Energy Technologies and Assessments 52: 102236. doi:10.1016/j.seta.2022.102236.
  • Kim, J., J. Kim, and C. Lee. 2019. “Anaerobic Co-Digestion of Food Waste, Human Feces, and Toilet Paper: Methane Potential and Synergistic Effect.” Fuel 248: 189–195. doi:10.1016/j.fuel.2019.03.081.
  • Li, C., and H. H. P. Fang. 2007. “Inhibition of Heavy Metals on Fermentative Hydrogen Production by Granular Sludge.” Chemosphere 67 (4): 668–673. doi:10.1016/j.chemosphere.2006.11.005.
  • Li, P., Z. Liu, M. Zhao, X. Dai, and W. Ruan. 2020. “Evaluation of Biogas Performance and Process Stability from Food, Kitchen, and Fruit/Vegetable Waste by Mono-, Co-, and Tridigestion.” Energy & Fuels 34 (10): 12734–12742. doi:10.1021/acs.energyfuels.0c02598.
  • Lin, C. -Y. 1992. “Effect of Heavy Metals on Volatile Fatty Acid Degradation in Anaerobic Digestion.” Water Research 26 (2): 177–183. doi:https://doi.org/10.1016/0043-1354(92)90217-r.
  • Li, Y., R. Zhang, X. Liu, C. Chen, X. Xiao, L. Feng, Y. He, and G. Liu. 2013. “Evaluating Methane Production from Anaerobic Mono- and Co-Digestion of Kitchen Waste, Corn Stover, and Chicken Manure.” Energy & Fuels 27 (4): 2085–2091. doi:https://doi.org/10.1021/ef400117f.
  • Lo, H et al. (2012). “Effects of spiked metals on the MSW anaerobic digestion.” Waste Management Research 30 (1): 32–48. doi:10.1177/0734242X10383079.
  • McLean, E. O. 1965. “Aluminum. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties.” American Society of Agronomy 9: 978–998.
  • Miezah, K., K. Obiri-Danso, Z. Kádár, B. Fei-Baffoe, and M. Y. Mensah. 2015. “Municipal Solid Waste Characterization and Quantification as a Measure Towards Effective Waste Management in Ghana.” Waste Management 46: 15–27. doi:10.1016/j.wasman.2015.09.009.
  • Paritosh, K., S. K. Kushwaha, M. Yadav, N. Pareek, A. Chawade, and V. Vivekanand. 2017. “Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.” BioMed Research International 2017: 1–19. doi:https://doi.org/10.1155/2017/2370927.
  • Pramanik, S. K., F. B. Suja, M. Porhemmat, and B. K. Pramanik. 2019. “Performance and Kinetic Model of a Single-Stage Anaerobic Digestion System Operated at Different Successive Operating Stages for the Treatment of Food Waste.” Processes 7 (9): 600. doi:10.3390/pr7090600.
  • Romero-Güiza, M. S., J. Vila, J. Mata-Alvarez, J. M. Chimenos, and S. Astals. 2016. “The Role of Additives on Anaerobic Digestion: A Review.” Renewable & Sustainable Energy Reviews 58: 1486–1499. doi:10.1016/j.rser.2015.12.094.
  • Sandhu, S., and R. Kaushal. 2022a. “Anaerobic Co-Digestion of Food Wastes, Algae, Pond Sludge and Cow Dung for Biogas Yield Enhancement as a Potent Approach to Reduce Carbon Footprints.” Australian Journal of Mechanical Engineering 1–20. doi:10.1080/14484846.2021.2005865.
  • Sandhu, S., and R. Kaushal. 2022b. “Optimisation of Anaerobic Digestion of Layer Manure, Breeding Manure and Cow Dung Using Grey Relational Analysis.” Biomass Conversion and Biorefinery 1–13. doi:10.1007/s13399-022-02677-w.
  • Scherer, P. A., R. Arthur, and S. Antonczyk. 2021. “Accelerated Biomethane Potential Assay for Straw with Artificially Flocculated Sludge and Defined ‘Synthetic manure’.” Bioresource Technology Reports 15: 100787. doi:10.1016/j.biteb.2021.100787.
  • Schmidt, T., M. Nelles, F. Scholwin, and J. Pröter. 2014. “Trace Element Supplementation in the Biogas Production from Wheat Stillage–Optimization of Metal Dosing.” Bioresource Technology 168: 80–85. doi:10.1016/j.biortech.2014.02.124.
  • Schönheit, P., J. Moll, and R. K. Thauer. 1979. “Nickel, Cobalt, and Molybdenum Requirement for Growth of Methanobacterium Thermoautotrophicum.” Archives of Microbiology 123 (1): 105–107. doi:https://doi.org/10.1007/bf00403508.
  • Sharma, A., V. Pareek, and D. Zhang. 2015. “Biomass Pyrolysis—A Review of Modelling, Process Parameters and Catalytic Studies.” Renewable & Sustainable Energy Reviews 50: 1081–1096. doi:10.1016/j.rser.2015.04.193.
  • Singh, D., P. K. Chhonkar, and R. N. Pandey. 1999. Soil Plant Water Analysis: A Methods Manual, 80–82. New Delhi: IARI.
  • Singh, S., N. Hariteja, S. Sharma, N. J. Raju, and T. J. R. Prasad. 2021. “Production of biogas from human faeces mixed with the co-substrate poultry litter & cow dung.” Environmental Technology & Innovation 23: 101551. doi:https://doi.org/10.1016/j.eti.2021.101551.
  • Singh, P. K., H. Srichandan, S. K. Ojha, R. Pattnaik, S. K. Verma, S. Pal , J. Singh, and S. Mishra. 2021. “Evaluation of Biomethane Potential of Codigested Sheep Manure and Kitchen Refuse.” Biomass Conversion and Biorefinery 1–11. doi:10.1007/s13399-021-01961-5.
  • Speece, R. E. 1983. “Anaerobic Biotechnology for Industrial Wastewater Treatment.” Environmental Science & Technology 17 (9): 416A–427A. doi:10.1021/es00115a725.
  • Worm, P., F. G. Fermoso, P. N. L. Lens, and C. M. Plugge. 2009. “Decreased Activity of a Propionate Degrading Community in a UASB Reactor Fed with Synthetic Medium Without Molybdenum, Tungsten and Selenium.” Enzyme and Microbial Technology 45 (2): 139–145. doi:https://doi.org/10.1016/j.enzmictec.2009.02.001.
  • Zhang, R., H. M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate, and P. Gamble. 2007. “Characterization of Food Waste as Feedstock for Anaerobic Digestion.” Bioresource Technology 98 (4): 929–935. doi:10.1016/j.biortech.2006.02.039.
  • Zhang, L., W. Ouyang, and A. Lia. 2012. “Essential Role of Trace Elements in Continuous Anaerobic Digestion of Food Waste.” Procedia Environmental Sciences 16: 102–111. doi:10.1016/j.proenv.2012.10.014.
  • Zhang, W., S. Wu, J. Guo, J. Zhou, and R. Dong. 2015. “Performance and Kinetic Evaluation of Semi-Continuously Fed Anaerobic Digesters Treating Food Waste: Role of Trace Elements.” Bioresource Technology 178: 297–305. doi:10.1016/j.biortech.2014.08.046.
  • Zhang, W., L. Zhang, and A. Li. 2015. “Anaerobic Co-Digestion of Food Waste with MSW Incineration Plant Fresh Leachate: Process Performance and Synergistic Effects.” Chemical Engineering Journal 259: 795–805. doi:10.1016/j.cej.2014.08.039.