2,053
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Carbon capture, sequestration, and usage for clean and green environment: challenges and opportunities

, , , &
Pages 248-268 | Received 16 Aug 2022, Accepted 01 Sep 2023, Published online: 13 Sep 2023

References

  • Acosta-Ramirez, A., M. Bertoli, D. G. Gusev, and M. Schlaf. 2012. “Homogeneous Catalytic Hydrogenation of Long-Chain Esters by an Osmium Pincer Complex and Its Potential Application in the Direct Conversion of Triglycerides into Fatty Alcohols.” Green Chemistry 14 (4): 1178–1188. https://doi.org/10.1039/c2gc15960k.
  • Akay, G. 2020. “Plasma Generating—Chemical Looping Catalyst Synthesis by Microwave Plasma Shock for Nitrogen Fixation from Air and Hydrogen Production from Water for Agriculture and Energy Technologies in Global Warming Prevention.” Catalysts 10 (2): 152. https://doi.org/10.3390/catal10020152.
  • Al‐Mamoori, A., A. Krishnamurthy, A. A. Rownaghi, and F. Rezaei. 2017. “Carbon Capture and Utilization Update.” Energy Technology 5 (6): 834–849. https://doi.org/10.1002/ente.201600747.
  • Al-Janabi, N., P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein, and X. Fan. 2015. “Mapping the Cu-BTC Metal–Organic Framework (HKUST-1) Stability Envelope in the Presence of Water Vapour for CO2 Adsorption from Flue Gases.” Chemical Engineering Journal 281:669–677. https://doi.org/10.1016/j.cej.2015.07.020.
  • Alturki, A. 2022. “The Global Carbon Footprint and How New Carbon Mineralization Technologies Can Be Used to Reduce CO2 Emissions.” ChemEngineering 6 (3): 44. https://doi.org/10.3390/chemengineering6030044.
  • Balachandran, U., M. S. Kleefisch, T. P. Kobylinski, S. L. Morissette, and S. Pei. 1997. Oxygen ion conducting dense ceramic. U. S. Patent 5,580,497. United States (Chigago). https://patentimages.storage.googleapis.com/ea/ae/8c/2d4b80704ecb29/US5639437.pdf.
  • Benson, S., Srinivasachar, S., Laudal, D., and Browers, B. 2014. Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. U. North Dakota and Envergex. Final project meeting. DOE award DE-FE0007603. https://www.osti.gov/servlets/purl/1182546.
  • Breault, R. W. 2010. “Gasification Processes Old and New: A Basic Review of the Major Technologies.” Energies 3 (2): 216–240. https://doi.org/10.3390/en3020216.
  • Brennan, L., and P. Owende. 2010. “Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products.” Renewable and Sustainable Energy Reviews 14 (2): 557–577. https://doi.org/10.1016/j.rser.2009.10.009.
  • Butler, C. D. 2018. “Climate Change, Health and Existential Risks to Civilization: A Comprehensive Review (1989–2013).” International Journal of Environmental Research and Public Health 15 (10): 2266. https://doi.org/10.3390/ijerph15102266.
  • Chen, C. C., R. Prasad, and C. F. Gottzmann. 1999. Solid Electrolyte Membrane with Porous Catalytically-Enhancing Constituents. Chicago, United States: Google Patents.
  • Churkina, G., A. Organschi, C. P. Reyer, A. Ruff, K. Vinke, Z. Liu, B. K. Reck, T. Graedel, and H. J. Schellnhuber. 2020. “Buildings as a Global Carbon Sink.” Nature Sustainability 3 (4): 269–276. https://doi.org/10.1038/s41893-019-0462-4.
  • Colangelo, F., A. Petrillo, and I. Farina. 2021. “Comparative Environmental Evaluation of Recycled Aggregates from Construction and Demolition Wastes in Italy.” Science of the Total Environment 798:149250. https://doi.org/10.1016/j.scitotenv.2021.149250.
  • D’Alessandro, D. M., B. Smit, and J. R. Long. 2010. “Carbon Dioxide Capture: Prospects for New Materials.” Angewandte Chemie International Edition 49 (35): 6058–6082. https://doi.org/10.1002/anie.201000431.
  • Dias De Oliveira, M. E., B. E. Vaughan, and E. J. Rykiel. 2005. “Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint.” BioScience 55 (7): 593–602. https://doi.org/10.1641/0006-3568(2005)055[0593:EAFECD]2.0.CO;2.
  • Dixit, F., K. Zimmermann, M. Alamoudi, L. Abkar, B. Barbeau, M. Mohseni, B. Kandasubramanian, and K. Smith. 2022. “Application of MXenes for Air Purification, Gas Separation and Storage: A Review.” Renewable and Sustainable Energy Reviews 164:112527. https://doi.org/10.1016/j.rser.2022.112527.
  • Drage, T. C., C. E. Snape, L. A. Stevens, J. Wood, J. Wang, A. I. Cooper, R. Dawson, X. Guo, C. Satterley, and R. Irons. 2012. “Materials Challenges for the Development of Solid Sorbents for Post-Combustion Carbon Capture.” Journal of Materials Chemistry 22 (7): 2815–2823. https://doi.org/10.1039/C2JM12592G.
  • Dreyfus, G. B., Y. Xu, D. T. Shindell, D. Zaelke, and V. Ramanathan. 2022. “Mitigating Climate Disruption in Time: A Self-Consistent Approach for Avoiding Both Near-Term and Long-Term Global Warming.” Proceedings of the National Academy of Sciences 119 (22): e2123536119. https://doi.org/10.1073/pnas.2123536119.
  • Durmaz, T. 2018. “The Economics of CCS: Why Have CCS Technologies Not Had an International Breakthrough?” Renewable and Sustainable Energy Reviews 95:328–340. https://doi.org/10.1016/j.rser.2018.07.007.
  • Fujikawa, S., R. Selyanchyn, and T. Kunitake. 2021. “A New Strategy for Membrane-Based Direct Air Capture.” Polymer Journal 53 (1): 111–119. https://doi.org/10.1038/s41428-020-00429-z.
  • Ghiat, I., and T. Al-Ansari. 2021. “A Review of Carbon Capture and Utilisation as a CO2 Abatement Opportunity within the EWF Nexus.” Journal Of CO2 Utilization 45:101432. https://doi.org/10.1016/j.jcou.2020.101432.
  • Groom, N. 2020. Problems Plagued US CO2 Capture Project Before Shutdown: Document. London (UK): Reuters.
  • Guilbert, D., and G. Vitale. 2021. “Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon.” Clean Technologies 3 (4): 881–909. https://doi.org/10.3390/cleantechnol3040051.
  • Gutknecht, V., S. Ó. Snæbjörnsdóttir, B. Sigfússon, E. S. Aradóttir, and L. Charles. 2018. “Creating a Carbon Dioxide Removal Solution by Combining Rapid Mineralization of CO2 with Direct Air Capture.” Energy Procedia 146:129–134. https://doi.org/10.1016/j.egypro.2018.07.017.
  • Habib, M., H. Badr, S. Ahmed, R. Ben‐Mansour, K. Mezghani, S. Imashuku, G. la O’, Y. Shao‐Horn, N. Mancini, and A. Mitsos. 2011. “A Review of Recent Developments in Carbon Capture Utilizing Oxy‐Fuel Combustion in Conventional and Ion Transport Membrane Systems.” International Journal of Energy Research 35 (9): 741–764. https://doi.org/10.1002/er.1798.
  • Hansen, J., M. Sato, R. Ruedy, A. Lacis, and V. Oinas. 2000. “Global Warming in the Twenty-First Century: An Alternative Scenario.” Proceedings of the National Academy of Sciences 97 (18): 9875–9880. https://doi.org/10.1073/pnas.170278997.
  • Hussin, F., and M. K. Aroua. 2020. “Recent Trends in the Development of Adsorption Technologies for Carbon Dioxide Capture: A Brief Literature and Patent Reviews.” Journal of Cleaner Production. (2014–2018)253:119707. https://doi.org/10.1016/j.jclepro.2019.119707.
  • IEA (, I. E. A.) 2019a. Putting CO2 to usehttps://iea.blob.core.windows.net/assets/50652405-26db-4c41-82dc-c23657893059/Putting_CO2_to_Use.pdf.
  • IEA (, I. E. A.) 2019b. The Role Of CO2 Storage https://www.iea.org/reports/the-role-of-CO2-storage.
  • Irlam, L. 2017. “Global Costs of Carbon Capture and Storage.” Global CCS Institute 1: 16.
  • Jerndal, E., T. Mattisson, and A. Lyngfelt. 2006. “Thermal Analysis of Chemical-Looping Combustion.” Chemical Engineering Research and Design 84 (9): 795–806. https://doi.org/10.1205/cherd05020.
  • Kar, S., A. Goeppert, and G. S. Prakash. 2019. “Integrated CO2 Capture and Conversion to Formate and Methanol: Connecting Two Threads.” Accounts of Chemical Research 52 (10): 2892–2903. https://doi.org/10.1021/acs.accounts.9b00324.
  • Kazemifar, F. 2022. “A Review of Technologies for Carbon Capture, Sequestration, and Utilization: Cost, Capacity, and Technology Readiness.” Greenhouse Gases: Science and Technology 12 (1): 200–230. https://doi.org/10.1002/ghg.2131.
  • Keskin, S., T. M. van Heest, and D. S. Sholl. 2010. “Can Metal–Organic Framework Materials Play a Useful Role in Large‐Scale Carbon Dioxide Separations?” ChemSuschem 3 (8): 879–891. https://doi.org/10.1002/cssc.201000114.
  • Korre, A., Z. Nie, and S. Durucan. 2010. “Life Cycle Modelling of Fossil Fuel Power Generation with Post-Combustion CO2 Capture.” International Journal of Greenhouse Gas Control 4 (2): 289–300. https://doi.org/10.1016/j.ijggc.2009.08.005.
  • Lai, J. Y., L. H. Ngu, and S. S. Hashim. 2021. “A Review of CO2 Adsorbents Performance for Different Carbon Capture Technology Processes Conditions.” Greenhouse Gases: Science and Technology 11 (5): 1076–1117. https://doi.org/10.1002/ghg.2112.
  • Ledley, T. S., E. T. Sundquist, S. E. Schwartz, D. K. Hall, J. D. Fellows, and T. L. Killeen. 1999. “Climate Change and Greenhouse Gases.” Eos Transactions American Geophysical Union 80 (39): 453–458. https://doi.org/10.1029/99EO00325.
  • Liang, Z. H., W. Rongwong, H. Liu, K. Fu, H. Gao, F. Cao, R. Zhang, T. Sema, A. Henni, and K. Sumon. 2015. “Recent Progress and New Developments in Post-Combustion Carbon-Capture Technology with Amine Based Solvents.” International Journal of Greenhouse Gas Control 40:26–54. https://doi.org/10.1016/j.ijggc.2015.06.017.
  • Liguori, S., K. Kian, N. Buggy, B. H. Anzelmo, and J. Wilcox. 2020. “Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes.” Progress in Energy and Combustion Science 80:100851. https://doi.org/10.1016/j.pecs.2020.100851.
  • Liu, A. H., R. Ma, C. Song, Z. Z. Yang, A. Yu, Y. Cai, L. N. He, Y. N. Zhao, B. Yu, and Q. W. Song. 2012. “Equimolar CO2 Capture by N‐Substituted Amino Acid Salts and Subsequent Conversion.” Angewandte Chemie International Edition 51 (45): 11306–11310. https://doi.org/10.1002/anie.201205362.
  • Mahasenan, N., S. Smith, and K. Humphreys 2003. The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, October 2002 1–4.
  • Markewitz, P., W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, and T. E. Müller. 2012. “Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of CO 2.” Energy & Environmental Science 5 (6): 7281–7305. https://doi.org/10.1039/c2ee03403d.
  • Mas, B., A. Cladera, T. Del Olmo, and F. Pitarch. 2012. “Influence of the Amount of Mixed Recycled Aggregates on the Properties of Concrete for Non-Structural Use.” Construction and Building Materials 27 (1): 612–622. https://doi.org/10.1016/j.conbuildmat.2011.06.073.
  • Massai, L., and C.-M. Beyet. 2018. “Current Developments in Carbon & Climate Law.” Carbon & Climate Law Review 12 (3): 272–277. https://doi.org/10.21552/cclr/2018/3/13.
  • McQueen, N., K. V. Gomes, C. McCormick, K. Blumanthal, M. Pisciotta, and J. Wilcox. 2021. “A Review of Direct Air Capture (DAC): Scaling Up Commercial Technologies and Innovating for the Future.” Progress in Energy 3 (3): 032001. https://doi.org/10.1088/2516-1083/abf1ce.
  • Mikhaylov, A., N. Moiseev, K. Aleshin, and T. Burkhardt. 2020. “Global Climate Change and Greenhouse Effect.” Entrepreneurship & Sustainability Issues 7 (4): 2897. https://doi.org/10.9770/jesi.2020.7.4(21).
  • Mohanty, A., M. A. Misra, and G. Hinrichsen. 2000. “Biofibres, Biodegradable Polymers and Biocomposites: An Overview.” Macromolecular Materials and Engineering 276 (1): 1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1:AID-MAME1>3.0.CO;2-W.
  • Montzka, S. A., E. J. Dlugokencky, and J. H. Butler. 2011. “Non-CO2 Greenhouse Gases and Climate Change.” Nature 476 (7358): 43–50. https://doi.org/10.1038/nature10322.
  • Morris, R. E., and P. S. Wheatley. 2008. “Gas Storage in Nanoporous Materials.” Angewandte Chemie International Edition 47 (27): 4966–4981. https://doi.org/10.1002/anie.200703934.
  • Mülhaupt, R. 2013. “Green Polymer Chemistry and Bio‐Based Plastics: Dreams and Reality.” Macromolecular Chemistry and Physics 214 (2): 159–174. https://doi.org/10.1002/macp.201200439.
  • Muradov, N. Z., and T. N. Veziroğlu. 2008. ““Green” Path from Fossil-Based to Hydrogen Economy: An Overview of Carbon-Neutral Technologies.” International Journal of Hydrogen Energy 33 (23): 6804–6839. https://doi.org/10.1016/j.ijhydene.2008.08.054.
  • Nelson, D. D., B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser. 2004. “High Precision Measurements of Atmospheric Nitrous Oxide and Methane Using Thermoelectrically Cooled Mid-Infrared Quantum Cascade Lasers and Detectors.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60 (14): 3325–3335. https://doi.org/10.1016/j.saa.2004.01.033.
  • Olabi, A., K. Obaideen, K. Elsaid, T. Wilberforce, E. T. Sayed, H. M. Maghrabie, and M. A. Abdelkareem. 2022. “Assessment of the Pre-Combustion Carbon Capture Contribution into Sustainable Development Goals SDGs Using Novel Indicators.” Renewable and Sustainable Energy Reviews 153:111710. https://doi.org/10.1016/j.rser.2021.111710.
  • Olajire, A. A. 2010. “CO2 Capture and Separation Technologies for End-Of-Pipe Applications–A Review.” Energy 35 (6): 2610–2628. https://doi.org/10.1016/j.energy.2010.02.030.
  • Olhoff, A., and J. M. Christensen 2018. Emissions Gap Report 2018. UNEP DTU Partnership: Copenhagen, Denmark.
  • O’Neill, S. 2021. Direct Air Carbon Capture Takes Baby Steps—Giant Strides are Needed. Elsevier.
  • Palermo, V., and Y. Hernandez. 2020. “Group Discussions on How to Implement a Participatory Process in Climate Adaptation Planning: A Case Study in Malaysia.” Ecological Economics 177:106791. https://doi.org/10.1016/j.ecolecon.2020.106791.
  • Paustian, K., C. V. Cole, D. Sauerbeck, and N. Sampson. 1998. “CO2 Mitigation by Agriculture: An Overview.” Climatic Change 40 (1): 135–162. https://doi.org/10.1023/A:1005347017157.
  • Peters, M., B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, and T. E. Müller. 2011. “Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain.” ChemSuschem 4 (9): 1216–1240. https://doi.org/10.1002/cssc.201000447.
  • Quadrelli, E. A., G. Centi, J. L. Duplan, and S. Perathoner. 2011. “Carbon Dioxide Recycling: Emerging Large‐Scale Technologies with Industrial Potential.” ChemSuschem 4 (9): 1194–1215. https://doi.org/10.1002/cssc.201100473.
  • Rego, R. M., M. D. Kurkuri, and M. Kigga. 2021. “Sustainable Green Approaches in Sorption-Based Defluoridation: Recent Progress.” Green Technologies for the Defluoridation of Water 1: 141–174.
  • Reis, D. D. C., P. B. Golgher, A. S. Silva, and A. Laender 2004. Automatic Web News Extraction Using Tree Edit Distance. Proceedings of the 13th international conference on World Wide Web, New York, NY, USA.
  • Rissman, J., C. Bataille, E. Masanet, N. Aden, W. R. Morrow III, N. Zhou, N. Elliott, R. Dell, N. Heeren, and B. Huckestein. 2020. “Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070.” Applied Energy 266:114848. https://doi.org/10.1016/j.apenergy.2020.114848.
  • Schwartz, M., J. H. White, and A. F. Sammels. 2000. Solid State Oxygen Anion and Electron Mediating Membrane and Catalytic Membrane Reactors Containing Them. Chigaco, Unites States: Google Patents.
  • Sheldon, D. J., and M. R. Crimmin. 2022. “Repurposing of F-Gases: Challenges and Opportunities in Fluorine Chemistry.” Chemical Society Reviews 51 (12): 4977–4995. https://doi.org/10.1039/D1CS01072G.
  • Shen, M., W. Huang, M. Chen, B. Song, G. Zeng, and Y. Zhang. 2020. “(Micro) Plastic Crisis: Un-Ignorable Contribution to Global Greenhouse Gas Emissions and Climate Change.” Journal of Cleaner Production 254:120138. https://doi.org/10.1016/j.jclepro.2020.120138.
  • Smith, P. 2016. “Soil Carbon Sequestration and Biochar as Negative Emission Technologies.” Global Change Biology 22 (3): 1315–1324. https://doi.org/10.1111/gcb.13178.
  • Song, C. 2006. “Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing.” Catalysis Today 115 (1–4): 2–32. https://doi.org/10.1016/j.cattod.2006.02.029.
  • Stanger, R., T. Wall, R. Spörl, M. Paneru, S. Grathwohl, M. Weidmann, G. Scheffknecht, D. McDonald, K. Myöhänen, and J. Ritvanen. 2015. “Oxyfuel Combustion for CO2 Capture in Power Plants.” International Journal of Greenhouse Gas Control 40:55–125. https://doi.org/10.1016/j.ijggc.2015.06.010.
  • Sunarso, J., S. Baumann, J. Serra, W. Meulenberg, S. Liu, Y. Lin, and J. D. Da Costa. 2008. “Mixed Ionic–Electronic Conducting (MIEC) Ceramic-Based Membranes for Oxygen Separation.” Journal of Membrane Science 320 (1–2): 13–41. https://doi.org/10.1016/j.memsci.2008.03.074.
  • UNFCCC. 1992. https://unfccc.int/resource/docs/convkp/conveng.pdf
  • UNEP. 2021. https://www.unep.org/resources/annual-report-2021
  • Voskian, S., and T. A. Hatton. 2019. “Faradaic Electro-Swing Reactive Adsorption for CO 2 Capture.” Energy & Environmental Science 12 (12): 3530–3547. https://doi.org/10.1039/C9EE02412C.
  • Wilcox, J. 2012. Carbon Capture. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-2215-0.
  • Yadav, S., and S. Mondal. 2022. “A Review on the Progress and Prospects of Oxy-Fuel Carbon Capture and Sequestration (CCS) Technology.” Fuel 308:122057. https://doi.org/10.1016/j.fuel.2021.122057.
  • Yang, Z.-Z., L.-N. He, Y.-N. Zhao, B. Li, and B. Yu. 2011. “CO2 Capture and Activation by Superbase/Polyethylene Glycol and Its Subsequent Conversion.” Energy & Environmental Science 4 (10): 3971–3975. https://doi.org/10.1039/c1ee02156g.
  • Yang, B., Y. M. Wei, L. C. Liu, Y. B. Hou, K. Zhang, L. Yang, and Y. Feng. 2021. “Life Cycle Cost Assessment of Biomass Co-Firing Power Plants with CO2 Capture and Storage Considering Multiple Incentives.” Energy Economics 96:105173. https://doi.org/10.1016/j.eneco.2021.105173.
  • Yang, H., Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright. 2008. “Progress in Carbon Dioxide Separation and Capture: A Review.” Journal of Environmental Sciences 20 (1): 14–27. https://doi.org/10.1016/S1001-0742(08)60002-9.
  • Yoro, K. O., and M. O. Daramola. 2020. “CO2 Emission Sources, Greenhouse Gases, and the Global Warming effect.” in Advances in Carbon Capture, 3–28. Elsevier.
  • Zhang, Z., T. N. G. Borhani, and M. H. El-Naas. 2018. “Carbon Capture.” Exergetic, Energetic and Environmental Dimensions 997–1016. https://doi.org/10.1016/b978-0-12-813734-5.00056-1.
  • Zhang, R., and J. Zhang. 2021. “Long-Term Pathways to Deep Decarbonization of the Transport Sector in the Post-COVID World.” Transport Policy 110:28–36. https://doi.org/10.1016/j.tranpol.2021.05.018.
  • Zhang, K., G. Zhang, X. Liu, A. N. Phan, and K. Luo. 2017. “A Study on CO2 Decomposition to CO and O2 by the Combination of Catalysis and Dielectric-Barrier Discharges at Low Temperatures and Ambient Pressure.” Industrial & Engineering Chemistry Research 56 (12): 3204–3216. https://doi.org/10.1021/acs.iecr.6b04570.
  • Zhou, Z., F. Yu, and J. Ma. 2021. “Nanoconfinement Engineering for Enchanced Adsorption of Carbon Materials, Metal–Organic Frameworks, Mesoporous Silica, MXenes and Porous Organic Polymers: A Review.” Environmental Chemistry Letters 20 (1): 1–33. https://doi.org/10.1007/s10311-021-01355-z.
  • Zhu, Q. 2019. “Developments on CO2-utilization Technologies.” Clean Energy 3 (2): 85–100. https://doi.org/10.1093/ce/zkz008.