1,388
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effect of Recycled Polyethylene Terephthalate (PET) fibres on fresh and hardened properties of concrete: a review

&
Pages 269-284 | Received 20 Apr 2023, Accepted 05 Sep 2023, Published online: 18 Sep 2023

References

  • Adhikary, S. K., D. K. Ashish, and Ž. Rudžionis. 2021. “Aerogel Based Thermal Insulating Cementitious Composites: A Review.” Energy and Buildings 245:111058. https://doi.org/10.1016/j.enbuild.2021.111058.
  • Adhikary, S. K., D. K. Ashish, and Ž. Rudžionis. 2021. “Expanded Glass as Light-Weight Aggregate in Concrete – a Review.” Journal of Cleaner Production 313:127848. https://doi.org/10.1016/j.jclepro.2021.127848.
  • Adnan, H. M., and A. Dawood. 2020. “Strength Behavior of Reinforced Concrete Beam Using Re-Cycle of PET Wastes as Synthetic Fibers.” Case Studies in Construction Materials 13:13. https://doi.org/10.1016/j.cscm.2020.e00367.
  • Ahmed, H. U., R. Faraj, N. Hilal, A. Mohammed, and A. Sherwani. 2021. “Use of Recycled Fibers in Concrete Composites: A Systematic Comprehensive Review.” Composites Part B Engineering 215:108769. https://doi.org/10.1016/j.compositesb.2021.108769.
  • Alani, A. H., M. Azmi Megat Johari, A. Tareq Noaman, N. Muhamad Bunnori, and T. Majid. 2022. “Effect of the Incorporation of PET Fiber and Ternary Blended Binder on the Flexural and Tensile Behaviour of Ultra-High Performance Green Concrete.” Construction and Building Materials 331:127306. https://doi.org/10.1016/j.conbuildmat.2022.127306.
  • Al-Hadithi, A. I., M. Abdulrahman, and M. Al-Rawi. 2020. “Flexural Behaviour of Reinforced Concrete Beams Containing Waste Plastic Fibers.“ IOP Conference Series: Materials Science and Engineering, 012173. https://doi.org/10.1088/1757-899X/737/1/012173.
  • Alshkane, Y., H. U. Boiny, Y. M. Alshkane, and K. S. RAFIQ 2016. “Mechanical Properties of Cement Mortar by Using Polyethylene Terephthalate Fibers.” 5th National and 1st International Conference on Modern Materials and Structures in Civil Engineering. Tehran.
  • Ambassah, N. 2019. “Engineering Properties of Polyethylene Terephthalate Fibre Reinforced Concrete with Fly Ash as a Partial Cement Replacement.” Civil and Environmental Research 11 (6): 25–34.
  • Anandan, S., and M. Alsubih. 2021. “Mechanical Strength Characterization of Plastic Fiber Reinforced Cement Concrete Composites.” Applied Sciences (Switzerland) 11 (2): 1–21. https://doi.org/10.3390/app11020852.
  • Assaad, J., M. Khalil, and J. Khatib. 2022. “Alternatives to Enhance the Structural Performance of PET-Modified Reinforced Concrete Beams.” Environments - MDPI 9 (3). https://doi.org/10.3390/environments9030037.
  • Awoyera, P. O., O. B. Olalusi, and N. Iweriebo. 2021. “Physical, Strength, and Microscale Properties of Plastic Fiber-Reinforced Concrete Containing Fine Ceramics Particles.” Materialia 5:100970. https://doi.org/10.1016/j.mtla.2020.100970.
  • Banthia, N., C. Zanotti, and M. Sappakittipakorn. 2014. “Sustainable Fiber Reinforced Concrete for Repair Applications.” Construction and Building Materials 67 (Part C): 405–412. https://doi.org/10.1016/j.conbuildmat.2013.12.073.
  • Barbuta, M., R. Bucur, A. Serbanoiu, S. Scutarasu, and A. Burlacu. 2017. “Combined Effect of Fly Ash and Fibers on Properties of Cement Concrete.” Procedia Engineering 181:280–284. https://doi.org/10.1016/j.proeng.2017.02.390.
  • Barzin, M. 2011. Mechanics of Fiber and Textile Reinforced Cement Composites, 441. United States: Taylor and Francis, CRC press.
  • Becerril-Arreola, R., and R. E. Bucklin. 2021. “Beverage Bottle Capacity, Packaging Efficiency, and the Potential for Plastic Waste Reduction.” Scientific Reports 11 (1). https://doi.org/10.1038/s41598-021-82983-x.
  • Benyathiar, P., K. Pankaj, C. Gregory, B. John, and D. K. Mishra. 2022. “Polyethylene Terephthalate (PET) Bottle‐To‐Bottle Recycling for the Beverage Industry: A Review.” Polymers 14 (12): 2366. https://doi.org/10.3390/polym14122366.
  • Borg, R., O. Baldacchino, and L. Ferrara. 2016. “Early Age Performance and Mechanical Characteristics of Recycled PET Fibre Reinforced Concrete.” Construction and Building Materials 108:29–47. https://doi.org/10.1016/j.conbuildmat.2016.01.029.
  • Choudhary, K., K. Sangwan, and D. Goyal. 2019. “Environment and Economic Impacts Assessment of PET Waste Recycling with Conventional and Renewable Sources of Energy.” Procedia CIRP 80:422–427. https://doi.org/10.1016/j.procir.2019.01.096.
  • Corinaldesi, V., and A. Nardinocchi. 2016. “Influence of Type of Fibers on the Properties of High Performance Cement-Based Composites.” Construction and Building Materials 107:321–331. https://doi.org/10.1016/j.conbuildmat.2016.01.024.
  • da Silva Magalhães, M., and M. Soares Viana Fernandes. 2015. “Bending Behaviour of Recycled PET Fiber Reinforced Cement-Based CompositeBending Behaviour of Recycled PET Fiber Reinforced Cement-Based Composite.” International Journal of Engineering and Technology 7 (4): 284–285. https://doi.org/10.7763/IJET.2015.V7.805.
  • De Silva, S., and T. Prasanthan. 2019. “Application of Recycled PET Fibers for Concrete Floors.” Engineer: Journal of the Institution of Engineers, Sri Lanka 52 (1): 21–27. https://doi.org/10.4038/engineer.v52i1.7340.
  • De Silva, A., T. Shakeer, J. Jayawardhana, P. Saumyasiri, and M. Priyadarshana. 2020. “Application of Blended Cement Mix PET Fiber High Strength Concrete for Structural Elements.” In Icsbe 2020, 667. Kandy, Sri Lanka: Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-16-4412-2_27.
  • Fernández, M. E., J. Payá, M. Borrachero, L. Soriano, A. Mellado, and J. Monzó. 2017. “Degradation Process of Postconsumer Waste Bottle Fibers Used in Portland Cement–Based Composites.” Journal of Materials in Civil Engineering 29 (10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002007.
  • Foti, D. 2011. “Preliminary Analysis of Concrete Reinforced with Waste Bottles PET Fibers.” Construction and Building Materials 25 (4): 1906–1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066.
  • Foti, D. 2013. “Use of Recycled Waste Pet Bottles Fibers for the Reinforcement of Concrete.” Composite Structures 96:396–404. https://doi.org/10.1016/j.compstruct.2012.09.019.
  • Foti, D. 2019. “Recycled waste PET for sustainable fiber-reinforced concrete.“ Vol. 1, Use of Recycled Plastics in Eco-Efficient Concrete, 387–410. Cambridge: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102676-2.00018-9.
  • Fraternali, F., V. Ciancia, R. Chechile, G. Rizzano, L. Feo, and L. Incarnato. 2011. “Experimental Study of the Thermo-Mechanical Properties of Recycled PET Fiber-Reinforced Concrete.” Composite Structures 93 (9): 2368–2374. https://doi.org/10.1016/j.compstruct.2011.03.025.
  • Fraternali, F., I. Farina, C. Polzone, E. Pagliuca, L. Feo. 2013. “On the Use of R-PET Strips for the Reinforcement of Cement Mortars.” Composites Part B Engineering 46:207–210. https://doi.org/10.1016/j.compositesb.2012.09.070.
  • Fraternali, F., S. Spadea, and V. Berardi. 2014. “Effects of Recycled PET Fibres on the Mechanical Properties and Seawater Curing of Portland Cement-Based Concretes.” Construction and Building Materials 61:293–302. https://doi.org/10.1016/j.conbuildmat.2014.03.019.
  • Gudayu, A. D., L. Steuernagel, D. Meiners, and R. Gideon. 2021. “Characterization of the Dynamic Mechanical Properties of Sisal Fiber Reinforced PET Composites; Effect of Fiber Loading and Fiber Surface Modification.” Polymers and Polymer Composites 29 (9): 719–728. https://doi.org/10.1177/09673911211023032.
  • Hidaya, N., R. Mutuku, and J. Mwero. 2017. “Physical and Mechanical Experimental Investigation of Concrete Incorporated with Polyethylene Terephthalate (PET) Fibers.” European International Journal of Science and Technology 6 (8): 2304–9693.
  • Huang, F., Z. Jie, Z. Xiaoyan, W. Yuchao, F. Tengfei, E. Said, and R. Qiu, R. Qiu. 2022. “Preparation and Performance of Autoclaved Aerated Concrete Reinforced by Dopamine-Modified Polyethylene Terephthalate Waste Fibers.” Construction and Building Materials 384:128649. https://doi.org/10.1016/j.conbuildmat.2022.128649.
  • Hussien, A. S., and M. K. Mohammed. 2022. “Properties of Sustainable Self- Compacting Concrete Containing Treated and Modified Waste Plastic Fibers.” Anbar Journal of Engineering Science 13 (1): 35–50.
  • Irwan, J. M., R. M. Asyraf, N. Othman, H. B. Koh, M. M. K. Annas, and S. K. Faisal. 2013. “The Mechanical Properties of PET Fiber Reinforced Concrete from Recycled Bottle Wastes.” Advanced Materials Research 795:347–351. https://doi.org/10.4028/www.scientific.net/AMR.795.347.
  • Irwan, J., N. Othman, H. Koh, R. Asyraf, S. Faisal, M. Annas, and A. Shahrizan. 2013. “Development of Mix Design Nomograph for Polyethylene Terephthalate Fiber Concrete.” Applied Mechanics and Materials 253-255:408–416. https://doi.org/10.4028/www.scientific.net/AMM.253-255.408.
  • Jean, P., P. Gleize, H. Ramos, and H. R. Roman. 2012. “Mechanical Properties of Recycled PET Fibers in Concrete.” Materials Research 15 (4): 679–686. https://doi.org/10.1590/S1516-14392012005000088.
  • Kassa, R. B., C. Kanali, and N. Ambassah. 2019. “Flexural Performance Evaluation of Polyethylene Terephthalate Fibre Reinforced Concrete with Fly Ash as a Partial Cement Replacement.” International Journal of Engineering Research & Technology 12 (9): 1435–1440.
  • Khalid Ali, O., A. Ismail Al-Hadithi, and A. Tareq Noaman. 2022. “Flexural Performance of Layered PET Fiber Reinforced Concrete Beams.” Structures 35:55–67. https://doi.org/10.1016/j.istruc.2021.11.007.
  • Khalid, F. S., J. M. Irwan, M. Ibrahim, H. Wan, N. Othman, and S. Shahidan. 2018. “Performance of Plastic Wastes in Fiber-Reinforced Concrete Beams.” Construction and Building Materials 183:451–464. https://doi.org/10.1016/j.conbuildmat.2018.06.122.
  • Khatab, H., S. Mohammed, and L. Hameed. 2019. “Mechanical Properties of Concrete Contain Waste Fibers of Plastic Straps.“ IOP Conference Series: Materials Science and Engineering 557 (1): 012059. https://doi.org/10.1088/1757-899X/557/1/012059.
  • Kim, J. H., C. G. Park, S. W. Lee, S. W. Lee, and J. P. Won. 2008. “Effects of the Geometry of Recycled PET Fiber Reinforcement on Shrinkage Cracking of Cement-Based Composites.” Composites Part B Engineering 39 (3): 442–450. https://doi.org/10.1016/j.compositesb.2007.05.001.
  • Kim, S., N. Yi, H. Kim, J. Kim, and Y. Song. 2010. “Material and Structural Performance Evaluation of Recycled PET Fiber Reinforced Concrete.” Cement and Concrete Composites 32 (3): 232–240. https://doi.org/10.1016/j.cemconcomp.2009.11.002.
  • Koo, B. M., J. H. J. Kim, S. B. Kim, and S. Mun. 2014. “Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction.” Materials 7 (8): 5959–5981. https://doi.org/10.3390/ma7085959.
  • Marthong, C. 2015. “Effects of PET Fiber Arrangement and Dimensions on Mechanical Properties of Concrete.” International Education Studies 8 (2): 111–120. https://doi.org/10.1080/19373260.2015.1014304.
  • Marthong, C., and D. Kumar Sarma. 2015. “Mechanical Behavior of Recycled PET Fiber Reinforced Concrete Matrix.” International Journal of Civil and Environmental Engineering 9 (7): 879–883.
  • Marthong, C., and S. Marthong. 2016. “An Experimental Study on the Effect of PET Fibers on the Behavior of Exterior RC Beam-Column Connection Subjected to Reversed Cyclic Loading.” Structures 5:175–185. https://doi.org/10.1016/j.istruc.2015.11.003.
  • Meawad, A., and S. Ibrahim. 2019. “Novel Bifunctional Dispersing Agents from Waste PET Packaging Materials and Interaction with Cement.” Waste Management 85:563–573. https://doi.org/10.1016/j.wasman.2019.01.028.
  • Mechtcherine, V. 2012. “Towards a Durability Framework for Structural Elements and Structures Made of or Strengthened with High-Performance Fibre-Reinforced Composites.” Construction and Building Materials 31:94–104. https://doi.org/10.1016/j.conbuildmat.2011.12.072.
  • Mehta, A., and D. K. Ashish. 2020. “Silica Fume and Waste Glass in Cement Concrete Production: A Review.” Journal of Building Engineering 29:100888. https://doi.org/10.1016/j.jobe.2019.100888.
  • Mello, E., C. Ribellato, and E. Mohamedelhassan. 2014. “Improving Concrete Properties with Fibers Addition.” International Scholarly and Scientific Research & Innovation 8 (3): 245–250.
  • Meza, A., P. Pujadas, R. López-Carreño, L. Meza, and F. Pardo-Bosch. 2021. “Mechanical Optimization of Concrete with Recycled Pet Fibres Based on a Statistical-Experimental Study.” Materials 14 (2): 1–20. https://doi.org/10.3390/ma14020240.
  • Meza, A., and S. Siddique. 2019. “Effect of Aspect Ratio and Dosage on the Flexural Response of FRC with Recycled Fiber.” Construction and Building Materials 213:286–291. https://doi.org/10.1016/j.conbuildmat.2019.04.081.
  • Mohammed, A. A., and A. Rahim. 2020. “Experimental Behavior and Analysis of High Strength Concrete Beams Reinforced with PET Waste Fiber.” Construction and Building Materials 244:118350. https://doi.org/10.1016/j.conbuildmat.2020.118350.
  • Mukhopadhyay, S., and S. Khatana. 2015. “A Review on the Use of Fibers in Reinforced Cementitious Concrete.” Journal of Industrial Textiles 45 (2): 239–264. https://doi.org/10.1177/1528083714529806.
  • Mwonga, M. M., C. Kabubo, and N. Gathimba. 2022. “Properties of Concrete Produced Using Surface Modified Polyethylene Terephthalate Fibres.” Civil Engineering Journal (Iran) 8 (6): 1115–1135. https://doi.org/10.28991/CEJ-2022-08-06-03.
  • Nagarnaik, P. B., R. N. Nibudey, D. K. Parbat, and A. M. Pande. 2013. “A Model for Compressive Strength of PET Fiber Reinforced Concrete Natural Ventilation in Building View Project a Model for Compressive Strength of PET Fiber Reinforced Concrete.” American Journal of Engineering Research (AJER) 2 (12): 367–372.
  • Nibudey, R., P. Nagarnaik, and D. Parbat. 2014. “Shear Strength of Waste Plastic (PET) Fiber Reinforced Concrete.” International Journal of Modern Trends in Engineering and Research 2 (2): 58–65.
  • Nkomo, N., L. Masu, P. Nziu, and F. Ruffino. 2022. “Effects of Polyethylene Terephthalate Fibre Reinforcement on Mechanical Properties of Concrete.” Advances in Materials Science and Engineering 2022:1–9. https://doi.org/10.1155/2022/4899298.
  • Ochi, T., S. Okubo, and K. Fukui. 2007. “Development of Recycled PET Fiber and Its Application as Concrete-Reinforcing Fiber.” Cement and Concrete Composites 29 (6): 448–455. https://doi.org/10.1016/j.cemconcomp.2007.02.002.
  • Payrow, P., M. Nokken, D. Banu, and D. Feldman. 2011. “Effect of Surface Treatment on the Post-Peak Residual Strength and Toughness of Polypropylene/polyethylene-Blended Fiber-Reinforced Concrete.” Journal of Composite Materials 45 (20): 2047–2054. https://doi.org/10.1177/0021998311399481.
  • Pereira De Oliveira, L., and J. Castro-Gomes. 2011. “Physical and Mechanical Behaviour of Recycled PET Fibre Reinforced Mortar.” Construction and Building Materials 25 (4): 1712–1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044.
  • Pereira, E. L., A. L. de Oliveira Junior, and A. G. Fineza. 2017. “Optimization of Mechanical Properties in Concrete Reinforced with Fibers from Solid Urban Wastes (PET Bottles) for the Production of Ecological Concrete.” Construction and Building Materials 149:837–848. https://doi.org/10.1016/j.conbuildmat.2017.05.148.
  • Rasheed, L. S., W. S. Alyhya, and S. K. Kadhim. 2021. “Utilising PET Bottle Fibers in the Production of Concrete.” Journal of Physics 1973 (1): 012210. https://doi.org/10.1088/1742-6596/1973/1/012210.
  • Rathnayaka, R., W. Malshan, S. De Silva, and S. De Silva 2015. “Incorporating Recycled PET Fibres for Concrete Cylindrical Culverts.” 6th International Conference on Structural Engineering and Construction Management. Kandy, Sri Lanka.
  • Rostami, R., M. Zarrebini, M. Mandegari, D. Mostofinejad, and S. Abtahi. 2020. “A Review on Performance of Polyester Fibers in Alkaline and Cementitious Composites Environments.” Construction and Building Materials 241:117998. https://doi.org/10.1016/j.conbuildmat.2020.117998.
  • Salhotra, S., R. Khitoliya, and S. Kumar. 2021. Comparative Study of Uncoated and Coated Waste PET Fiber for Sustainable Concrete. Materials Today: Procedings 2214: 7853. https://doi.org/10.1016/j.matpr.2021.06.060.
  • Salhotra, S., R. Khitoliya, and S. Kumar Arora. 2021. “Assessing the Enhanced Concrete-Properties Induced by Sugarcane Bagasse Ash-Coated PET-Fibers.” Materials Today: Proceedings 48:994–1000. https://doi.org/10.1016/j.matpr.2021.06.319.
  • Salhotra, S., R. Khitoliya, and S. Kumar Arora. 2022. “Assessing the Applicability of GBFS-Coated PET-Fibers as a Construction Material: An Innovative Way of Waste Management.” Materials Today: Proceedings 48:1015–1020. https://doi.org/10.1016/j.matpr.2021.06.334.
  • Sandaruwini, A., K. Bandara, and S. De Silva. 2012. “Investigation on Mechanical Behaviour of Concrete with Fibers Made of Recycled Materials.” 3rd International Conference on Sustainable Built Environment, Kandy, Sri Lanka, November 2013, SBE/1281. Sri Lanka: ICSBE 2012.
  • Saumyasiri, P. 2020. “Application of Blended cement mix PET fiber concrete for road pavement.” Masters Thesis, Faculty of Engineering, University of Ruhuna, Sri Lanka.
  • Shahidan, S., N. Ranle, S. Zuki, F. Khalid, A. Ridzuan, and F. Nazri. 2018. “Concrete Incorporated with Optimum Percentages of Recycled Polyethylene Terephthalate (PET) Bottle Fiber.” International Journal of Integrated Engineering 10 (1): 1–8. https://doi.org/10.30880/ijie.2018.10.01.001.
  • Silva, D., A. Betioli, P. Gleize, H. Roman, L. Gómez, and J. Ribeiro. 2005. “Degradation of Recycled PET Fibers in Portland Cement-Based Materials.” Cement and Concrete Research 35 (9): 1741–1746. https://doi.org/10.1016/j.cemconres.2004.10.040.
  • Singh, A., and E. Vikas Khandelwal. 2020. “To Study the Effect of Pet Fiber (Polyethylene Terephthalate Fiber) on Geopolymer Concrete by Using GBBS and Fly Ash.” International Journal of Engineering Research & Technology 9 (10): 170–177.
  • Taherkhani, H. 2014. “An Investigation on the Properties of the Concrete Containing Waste PET Fibers.” International Journal of Science & Engineering Investigations 3 (27): 37–43.
  • Thomas, L., and S. Moosvi. 2020. “Hardened Properties of Binary Cement Concrete with Recycled PET Bottle Fiber: An Experimental Study.“ Materials Today: Proceedings 2214:7853. https://doi.org/10.1016/j.matpr.2020.03.025.
  • Trejbal, J., L. Kopecký, P. Tesárek, J. Fládr, J. Antoš, M. Somr, and V. Nežerka. 2016. “Impact of Surface Plasma Treatment on the Performance of PET Fiber Reinforcement in Cementitious Composites.” Cement and Concrete Research 89:276–287. https://doi.org/10.1016/j.cemconres.2016.08.018.
  • Veigas, M. G., M. Najimi, and B. Shafei. 2022. “Cementitious Composites Made with Natural Fibers: Investigation of Uncoated and Coated Sisal Fibers.” Case Studies in Construction Materials 16:16. https://doi.org/10.1016/j.cscm.2021.e00788.
  • Won, J. P., C. I. Jang, S. W. Lee, S. J. Lee, and H. Y. Kim. 2010. “Long-Term Performance of Recycled PET Fibre-Reinforced Cement Composites.” Construction and Building Materials 24 (5): 660–665. https://doi.org/10.1016/j.conbuildmat.2009.11.003.
  • Yu, J., J. Yao, X. Lin, H. Li, J. Y. Lam, C. K. Leung, and K. Shih, K. Shih. 2018. “Tensile Performance of Sustainable Strain-Hardening Cementitious Composites with Hybrid PVA and Recycled PET Fibers.” Cement and Concrete Research 107:110–123. https://doi.org/10.1016/j.cemconres.2018.02.013.