1,284
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AI-based decision support system for enhancing end-of-life value recovery from e-wastes

ORCID Icon & ORCID Icon
Pages 1-17 | Received 10 Jan 2023, Accepted 12 Dec 2023, Published online: 29 Jan 2024

References

  • Andersen, M. S. 2007. “An Introductory Note on the Environmental Economics of the Circular Economy.” Sustainability Science 2 (1): 133–140. https://doi.org/10.1007/s11625-006-0013-6.
  • Behdad, S., L. P. Berg, D. Thurston, and J. Vance. 2012. Integrating Immersive Computing Technology with Mixed-Integer Nonlinear Programming for Disassembly Sequence Planning Under Uncertainty. International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), August 2012, Chicago, Illinois, 1–9. https://doi.org/10.1115/DETC2012-70392.
  • Behdad, S., L. P. Berg, D. Thurston, and J. Vance. 2014. “Leveraging Virtual Reality Experiences with Mixed-Integer Nonlinear Programming Visualization of Disassembly Sequence Planning Under Uncertainty.” Journal of Mechanical Design 136 (4): 041005. https://doi.org/10.1115/1.4026463.
  • Bentaha, M. L., O. Battaiä, and A. Dolgui. 2015. “An Exact Solution Approach for Disassembly Line Balancing Problem Under Uncertainty of the Task Processing Times.” International Journal of Production Research 53 (6): 1807–1818. https://doi.org/10.1080/00207543.2014.961212.
  • Bogue, R. 2019. “Robots in Recycling and Disassembly.” Industrial Robot 46 (4): 461–466. https://doi.org/10.1108/IR-03-2019-0053.
  • de Almeida, S. T., M. Borsato, and C. M. Lie Ugaya. 2017. “Application of Exergy-Based Approach for Implementing Design for Reuse: The Case of Microwave Oven.” Journal of Cleaner Production 168:876–892. https://doi.org/10.1016/j.jclepro.2017.09.034.
  • Difilippo, N. M., and M. K. Jouaneh. 2019. “Using the Soar Cognitive Architecture to Remove Screws from Different Laptop Models.” IEEE Transactions on Automation Science and Engineering 16 (2): 767–780. https://doi.org/10.1109/TASE.2018.2860945.
  • European Commission Environment. 2011. European Commission Environment: Integrated Product Policy (IPP). European Commission. https://ec.europa.eu/environment/ipp/index_en.htm.
  • Eurostat. (2021). Eurostat. Recycling Rate of E-Waste. https://ec.europa.eu/eurostat/databrowser/view/t2020_rt130/default/bar?lang=en.
  • Forti, V., C. P. Baldé, R. Kuehr, G. Bel, S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, and X. Zeng. 2020. The Global E-waste Monitor 2020. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR). https://www.itu.int/en/ITU-D/Environment/Documents/Toolbox/GEM_2020_def.pdf.
  • Friedrich, C., A. Lechler, and A. Verl. 2016. The Control Architecture RoVidiasS - a Robotic Visual Disassembly and Assembly System. Proceedings of the IEEE International Conference on Industrial Technology, 2016-May, 113–118. https://doi.org/10.1109/ICIT.2016.7474735
  • Grimes, S. M., and D. Maguire. 2020. “Assessment of Priorities in Critical Material Recovery from Waste Electrical and Electronic Equipment.” Resources Policy 68 (May): 101658. https://doi.org/10.1016/j.resourpol.2020.101658.
  • Herrmann, C., A. Raatz, M. Mennenga, J. Schmitt, and S. Andrew. 2012. “Assessment of Automation Potentials for the Disassembly of Automotive Lithium Ion Battery Systems.” Leveraging Technology for a Sustainable World 149–154. https://doi.org/10.1007/978-3-642-29069-5_26.
  • IDIS. (2021). IDIS | the International Dismantling Information System. https://www.idis2.com/index.php.
  • Jie, L., M. Barwood, and S. Rahimifard. 2015. An Automated Approach for Disassembly and Recycling of Electric Vehicle Components. 2014 IEEE International Electric Vehicle Conference, IEVC 2014. https://doi.org/10.1109/IEVC.2014.7056158
  • Jin, X., and G. Tian. 2012. “A New Disassembly Network Graph Model and Its Automatic Generation.” Applied Mechanics & Materials 195196:1083–1088. https://doi.org/10.4028/www.scientific.net/AMM.195-196.1083.
  • Kim, H. J., S. Kernbaum, and G. Seliger. 2009. “Emulation-Based Control of a Disassembly System for LCD Monitors.” The International Journal of Advanced Manufacturing Technology 40 (3–4): 383–392. https://doi.org/10.1007/s00170-007-1334-z.
  • Kinoshita, Y., T. Yamada, S. M. Gupta, A. Ishigaki, and M. Inoue. 2020. “Decision Support Model of Environmentally Friendly and Economical Material Strategy for Life Cycle Cost and Recyclable Weight.” International Journal of Production Economics 224 (November 2019): 107545. https://doi.org/10.1016/j.ijpe.2019.107545.
  • Kopacek, P. 2005. “Semiautomatized Disassembly - Some Examples.” In IFAC Proceedings Volumes (IFAC-Papersonline) (Vol. 16, Issue 1). IFAC. https://doi.org/10.3182/20050703-6-CZ-1902.01449.
  • Laszlo, R., R. Holonec, R. Copîndean, and F. Dragan. 2019. Sorting System for E-Waste Recycling Using Contour Vision Sensors. Proceedings of 2019 8th International Conference on Modern Power Systems, MPS 2019, 8–11. https://doi.org/10.1109/MPS.2019.8759739
  • Li, J., M. Barwood, and S. Rahimifard. 2018. “Robotic Disassembly for Increased Recovery of Strategically Important Materials from Electrical Vehicles.” Robotics and Computer-Integrated Manufacturing 50 (March 2016): 203–212. https://doi.org/10.1016/j.rcim.2017.09.013.
  • Liu, Q., Z. Liu, W. Xu, Q. Tang, Z. Zhou, and D. T. Pham. 2019. “Human-Robot Collaboration in Disassembly for Sustainable Manufacturing.” International Journal of Production Research 57 (12): 4027–4044. https://doi.org/10.1080/00207543.2019.1578906.
  • Mao, W. L., W. C. Chen, C. T. Wang, and Y. H. Lin. 2021. “Recycling Waste Classification Using Optimized Convolutional Neural Network.” Resources, Conservation & Recycling 164 (July 2020): 105132. https://doi.org/10.1016/j.resconrec.2020.105132.
  • Nascimento, J. C. D. 2019. “Decision-making and Fuzzy Temporal Logic.” ArXiv 1–11. https://doi.org/10.48550/arXiv.1901.01970.
  • Parajuly, K., K. Habib, C. Cimpan, G. Liu, and H. Wenzel. 2016. “End-Of-Life Resource Recovery from Emerging Electronic Products – a Case Study of Robotic Vacuum Cleaners.” Journal of Cleaner Production 137:652–666. https://doi.org/10.1016/j.jclepro.2016.07.142.
  • Polat, O., O. Capraz, and A. Gungor. 2018. “Modelling of WEEE Recycling Operation Planning Under Uncertainty.” Journal of Cleaner Production 180:769–779. https://doi.org/10.1016/j.jclepro.2018.01.187.
  • Radaschin, A., A. Voda, E. Minca, and A. Filipescu. 2012. “Task Planning Algorithm in Hybrid Assembly/Disassembly Process.” In IFAC Proceedings Volumes (IFAC-Papersonline) (Vol. 45, Issue 6 PART 1). IFAC. https://doi.org/10.3182/20120523-3-RO-2023.00336.
  • Saidani, M., B. Yannou, Y. Leroy, and F. Cluzel. 2020. “Dismantling, Remanufacturing and Recovering Heavy Vehicles in a Circular Economy—Technico-economic and Organisational Lessons Learnt from an Industrial Pilot Study.” Resources, Conservation & Recycling 156 (November 2018): 104684. https://doi.org/10.1016/j.resconrec.2020.104684.
  • Schwab, K. 2015. The Fourth Industrial Revolution | Foreign Affairs. Foreign Affairs. https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution.
  • Shumon, M. R. H., S. Ahmed, and S. Ahmed. 2016. “Fuzzy Analytical Hierarchy Process Extent Analysis for Selection of End of Life Electronic Products Collection System in a Reverse Supply Chain.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230 (1): 157–168. https://doi.org/10.1177/0954405414553980.
  • Tumkor, S., and G. Senol. 2007. Disassembly Precedence Graph Generation. 2007 IEEE International Symposium on Assembly and Manufacturing, 104, 70–75. https://doi.org/10.1109/ISAM.2007.4288451
  • Ullah, M., and B. Sarkar. 2020. “Recovery-Channel Selection in a Hybrid Manufacturing-Remanufacturing Production Model with RFID and Product Quality.” International Journal of Production Economics 219 (June 2019): 360–374. https://doi.org/10.1016/j.ijpe.2019.07.017.
  • Vongbunyong, S., S. Kara, and M. Pagnucco. 2013. “Basic Behaviour Control of the Vision‐Based Cognitive Robotic Disassembly Automation.” Assembly Automation 33 (1): 38–56. https://doi.org/10.1108/01445151311294694.
  • Vongbunyong, S., M. Pagnucco, and S. Kara. 2016. “Vision-based execution monitoring of state transition in disassembly automation.” International Journal of Automation Technology 10 (5): 708–716. https://doi.org/10.20965/ijat.2016.p0708.
  • Vongbunyong, S., P. Vongseela, and J. Sreerattana-Aporn. 2017. “A Process Demonstration Platform for Product Disassembly Skills Transfer.” Procedia CIRP 61 (c): 281–286. https://doi.org/10.1016/j.procir.2016.11.197.
  • Yeh, W. C., and S. C. Wei. 2013. Simplified Swarm Optimization in Efficient Tool Assignment of Disassembly Sequencing Problem. 2013 IEEE Congress on Evolutionary Computation, CEC 2013, 2712–2719. https://doi.org/10.1109/CEC.2013.6557897
  • Yi, J., B. Yu, L. Du, C. Li, and D. Hu. 2008. “Research on the Selectable Disassembly Strategy of Mechanical Parts Based on the Generalized CAD Model.” The International Journal of Advanced Manufacturing Technology 37 (5–6): 599–604. https://doi.org/10.1007/s00170-007-0990-3.
  • Zhang, X. F., G. Yu, Z. Y. Hu, C. H. Pei, and G. Q. Ma. 2014. “Parallel Disassembly Sequence Planning for Complex Products Based on Fuzzy-Rough Sets.” The International Journal of Advanced Manufacturing Technology 72 (1–4): 231–239. https://doi.org/10.1007/s00170-014-5655-4.
  • Zhu, B., and U. Roy. 2015. “Ontology-Based Disassembly Information System for Enhancing Disassembly Planning and Design.” The International Journal of Advanced Manufacturing Technology 78 (9–12): 1595–1608. https://doi.org/10.1007/s00170-014-6704-8.
  • Ziqiang, Z., D. Guohong, W. Zhaoren, and Z. Xiangyan. 2015. “Fuzzy-Clustering Based Cost Modeling of Disassembly Planning for EOL Products.” The Open Mechanical Engineering Journal 9 (1): 546–551. https://doi.org/10.2174/1874155X01509010546.
  • Zülch, G., and J. Hrdina. 2010. “Control of Disassembly Systems Based on the Division of Labour by Means of Dynamically Adapting Routing Plans.” Lecture Notes in Business Information Processing 46 LNBI:396–407. https://doi.org/10.1007/978-3-642-12494-5_35.
  • Zülch, G., and R. Schwarz. 2008. “Planning and Balancing of Disassembly Systems.” IFIP International Federation for Information Processing 257:49–56. https://doi.org/10.1007/978-0-387-77249-3_6.