372
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy and mass assessment of the laser Directed Energy Deposition process (DED-LB) for reduced environmental impact

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-11 | Received 27 Nov 2023, Accepted 31 Jan 2024, Published online: 18 Feb 2024

References

  • Aleksandr, K., S. Ferdinando, R. Joel, C. Joel, M. Jordan, and J. Thomas. 2021. “Effect of Direct Energy Deposition Parameters on Morphology, Residual Stresses, Density, and Microstructure of 1.2709 Maraging Steel.” The International Journal of Advanced Manufacturing Technology 117 (3): 1287–1301. https://doi.org/10.1007/s00170-021-07635-w.
  • Alizadeh-Sh, M., S. P. H. Marashi, E. Ranjbarnodeh, R. Shoja-Razavi, and J. P. Oliveira. 2020. “Prediction of Solidification Cracking by an Empirical-Statistical Analysis for Laser Cladding of Inconel 718 Powder on a Non-Weldable Substrate.” Optics & Laser Technology 128:106244. https://doi.org/10.1016/j.optlastec.2020.106244.
  • Arrizubieta, J. I., O. Ukar, M. Ostolaza, and A. Mugica. 2020. “Study of the Environmental Implications of Using Metal Powder in Additive Manufacturing and Its Handling.” Metals 10 (2): 261.https://doi.org/10.3390/met10020261.
  • Bakhshayesh, M. M., F. Khodabakhshi, M. H. Farshidianfar, Š. Nagy, M. Mohammadi, and G. Wilde. 2024. “Additive Manufacturing of Stellite 6 Alloy by Laser-Directed Energy Deposition: Engineering the Crystallographic Texture.” Materials Characterization 207:113511. https://doi.org/10.1016/j.matchar.2023.113511.
  • Ehmsen, S., M. Glatt, and J. C. Aurich. 2023. “Influence of Process Parameters on the Power Consumption of High-Speed Laser Directed Energy Deposition.” Procedia CIRP 116:89–94. https://doi.org/10.1016/j.procir.2023.02.016.
  • Felice, I. O., J. Shen, A. F. C. Barragan, I. A. B. Moura, B. Li, B. Wang, H. Khodaverdi, et al. 2023. “Wire and Arc Additive Manufacturing of Fe-Based Shape Memory Alloys: Microstructure, Mechanical and Functional Behavior.” Materials & Design 231:112004. https://doi.org/10.1016/j.matdes.2023.112004.
  • Ferreira, I. A., J. P. Oliveira, J. Antonissen, and H. Carvalho. 2023. “Assessing the Impact of Fusion-Based Additive Manufacturing Technologies on Green Supply Chain Management Performance.” Journal of Manufacturing Technology Management 34 (1): 187–211. https://doi.org/10.1108/JMTM-06-2022-0235.
  • Gao, C., S. Wolff, and S. Wang. 2021. “Eco-Friendly Additive Manufacturing of Metals: Energy Efficiency and Life Cycle Analysis.” Journal of Manufacturing Systems 60:459–472. https://doi.org/10.1016/J.JMSY.2021.06.011.
  • Gisario, A., M. Kazarian, F. Martina, and M. Mehrpouya. 2019. “Metal Additive Manufacturing in the Commercial Aviation Industry: A Review.” Journal of Manufacturing Systems 53:124–149. https://doi.org/10.1016/J.JMSY.2019.08.005.
  • Hoefer, K. 2021. “Correlations Between Process and Geometric Parameters in Additive Manufacturing of Austenitic Stainless Steel Components Using 3DPMD.” Applied Sciences 11 (12). https://doi.org/10.3390/app11125610.
  • Huang, R., M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, and E. Masanet. 2016. “Energy and Emissions Saving Potential of Additive Manufacturing: The Case of Lightweight Aircraft Components.” Journal of Cleaner Production 135:1559–1570. https://doi.org/10.1016/j.jclepro.2015.04.109.
  • ISO/ASTM. 2021. ISO/ASTM 52900. Additive Manufacturing—General Principles—Fundamentals and Vocabulary.
  • Jackson, M. A., A. Van Asten, J. D. Morrow, S. Min, and F. E. Pfefferkorn. 2016. “A Comparison of Energy Consumption in Wire-Based and Powder-Based Additive-Subtractive Manufacturing.” Procedia Manufacturing 5:989–1005. https://doi.org/10.1016/j.promfg.2016.08.087.
  • Khalid, M., and Q. Peng. 2021. “Investigation of Printing Parameters of Additive Manufacturing Process for Sustainability Using Design of Experiments.” Journal of Mechanical Design 143 (3). https://doi.org/10.1115/1.4049521.
  • Liu, Z. Y., C. Li, X. Y. Fang, and Y. B. Guo. 2018. “Energy Consumption in Additive Manufacturing of Metal Parts.” Procedia Manufacturing 26:834–845. https://doi.org/10.1016/J.PROMFG.2018.07.104.
  • Maamoun, A. H., Y. F. Xue, M. A. Elbestawi, and S. C. Veldhuis. 2019. “The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10mg Alloys.” Materials 12 (1): 12. https://doi.org/10.3390/ma12010012.
  • Maddison, A. 2007. Contours of the World Economy 1-2030 AD: Essays in Macro-Economic History. New York, United States: Oxford University Press.
  • Mahamood, R. M., and E. T. Akinlabi. 2016. “Processing Parameters Optimization for Material Deposition Efficiency in Laser Metal Deposited Titanium Alloy.” Lasers in Manufacturing and Materials Processing 3 (1): 9–21. https://doi.org/10.1007/s40516-015-0020-5.
  • Ma, M., Z. Wang, and X. Zeng. 2015. “Effect of Energy Input on Microstructural Evolution of Direct Laser Fabricated IN718 Alloy.” Materials Characterization 106:420–427. https://doi.org/10.1016/J.MATCHAR.2015.06.027.
  • Mishurova, T., S. Cabeza, K. Artzt, J. Haubrich, M. Klaus, C. Genzel, G. Requena, and G. Bruno. 2017. “An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V.” Materials 10 (4): 348. https://doi.org/10.3390/ma10040348.
  • Moradi, M., A. Hasani, Z. Pourmand, and J. Lawrence. 2021. “Direct Laser Metal Deposition Additive Manufacturing of Inconel 718 Superalloy: Statistical Modelling and Optimization by Design of Experiments.” Optics & Laser Technology 144:107380. https://doi.org/10.1016/j.optlastec.2021.107380.
  • Najmon, J. C., S. Raeisi, and A. Tovar. 2019. “Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry.” Additive Manufacturing for the Aerospace Industry 7–31. https://doi.org/10.1016/B978-0-12-814062-8.00002-9.
  • Nickels, L. 2015. “AM and Aerospace: An Ideal Combination.” Metal Powder Report 70 (6): 300–303. https://doi.org/10.1016/J.MPRP.2015.06.005.
  • Ostolaza, M., J. I. Arrizubieta, M. Cortina, and A. Lamikiz. 2020. “Study of the Reinforcement Phase Dilution into the Metal Matrix in Functionally Graded Stellite 6 and WC Metal Matrix Composite by Laser Metal Deposition.” Procedia CIRP 94:330–335. https://doi.org/10.1016/J.PROCIR.2020.09.062.
  • Peng, T., J. Lv, A. Majeed, and X. Liang. 2021. “An Experimental Investigation on Energy-Effective Additive Manufacturing of Aluminum Parts via Process Parameter Selection.” Journal of Cleaner Production 279:123609. https://doi.org/10.1016/j.jclepro.2020.123609.
  • Schwerz, C., F. Schulz, E. Natesan, and L. Nyborg. 2022. “Increasing Productivity of Laser Powder Bed Fusion Manufactured Hastelloy X Through Modification of Process Parameters.” Journal of Manufacturing Processes 78:231–241. https://doi.org/10.1016/J.JMAPRO.2022.04.013.
  • Tan, C., F. Weng, S. Sui, Y. Chew, and G. Bi. 2021. “Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials.” International Journal of Machine Tools and Manufacture 170:103804. https://doi.org/10.1016/J.IJMACHTOOLS.2021.103804.
  • Wippermann, A., T. G. Gutowski, B. Denkena, M.-A. Dittrich, and Y. Wessarges. 2020. “Electrical Energy and Material Efficiency Analysis of Machining, Additive and Hybrid Manufacturing.” Journal of Cleaner Production 251:119731. https://doi.org/10.1016/j.jclepro.2019.119731.
  • Yang, Y., L. Li, Y. Pan, and Z. Sun. 2017. “Energy Consumption Modeling of Stereolithography-Based Additive Manufacturing Toward Environmental Sustainability.” Journal of Industrial Ecology 21 (S1): S168–S178. https://doi.org/10.1111/jiec.12589.