4,470
Views
6
CrossRef citations to date
0
Altmetric
Report

A glyco-engineering approach for site-specific conjugation to Fab glycans

, , , , , , , , , & ORCID Icon show all
Article: 2149057 | Received 23 Jul 2022, Accepted 15 Nov 2022, Published online: 29 Nov 2022

References

  • Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjugate Chem. 2010;21(1):5–15. doi:10.1021/bc9002019.
  • Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45. doi:10.4161/mabs.27022.
  • Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26:925–32. doi:10.1038/nbt.1480.
  • Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A. 2012;109(40):16101–06. doi:10.1073/pnas.1211023109.
  • Italia JS, Addy PS, Erickson SB, Peeler JC, Weerapana E, Chatterjee A. Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J Am Chem Soc. 2019;141(15):6204–12. doi:10.1021/jacs.8b12954.
  • Hutchins BM, Kazane SA, Staflin K, Forsyth JS, Felding-Habermann B, Schultz PG, Smider VV. Site-specific coupling and sterically controlled formation of multimeric antibody Fab fragments with unnatural amino acids. J Mol Biol. 2011;406(4):595–603. doi:10.1016/j.jmb.2011.01.011.
  • Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, Ho WH, Farias S, Casas MG, Abdiche Y, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20(2):161–67. doi:10.1016/j.chembiol.2013.01.010.
  • Wu KL, Yu C, Lee C, Zuo C, Ball ZT, Xiao H. Precision modification of native antibodies. Bioconjugate Chem. 2021;32(9):1947–59. doi:10.1021/acs.bioconjchem.1c00342.
  • Okeley NM, Toki BE, Zhang X, Jeffrey SC, Burke PJ, Alley SC, Senter PD. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjugate Chem. 2013;24(10):1650–55. doi:10.1021/bc4002695.
  • Zhou Q, Stefano JE, Manning C, Kyazike J, Chen B, Gianolio DA, Park A, Busch M, Bird J, Zheng X, et al. Site-specific antibody-drug conjugation through glycoengineering. Bioconjugate Chem. 2014;25(3):510–20. doi:10.1021/bc400505q.
  • O’Shannessy DJ, Dobersen MJ, Quarles RH. A novel procedure for labeling immunoglobulins by conjugation to oligosaccharide moieties. Immunol Lett. 1984;8(5):273–77. doi:10.1016/0165-2478(84)90008-7.
  • Ramakrishnan B, Qasba PK. Structure-based design of β1,4-galactosyltransferase I (β4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens β4Gal-T1 donor specificity. J Biol Chem. 2002;277(23):20833–39. doi:10.1074/jbc.M111183200.
  • Thompson P, Ezeadi E, Hutchinson I, Fleming R, Bezabeh B, Lin J, Mao S, Chen C, Masterson L, Zhong H, et al. Straightforward glycoengineering approach to site-specific antibody-pyrrolobenzodiazepine conjugates. ACS Med Chem Lett. 2016;7(11):1005–08. doi:10.1021/acsmedchemlett.6b00278.
  • Zhu Z, Ramakrishnan B, Li J, Wang Y, Feng Y, Prabakaran P, Colantonio S, Dyba MA, Qasba PK, Dimitrov DS. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs. 2014;6:1190–200. doi:10.4161/mabs.29889.
  • Li X, Fang T, Boons GJ. Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed Engl. 2014;53:7179–82. doi:10.1002/anie.201402606.
  • van Geel R, Wijdeven MA, Heesbeen R, Verkade JM, Wasiel AA, van Berkel SS, van Delft FL. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody-drug conjugates. Bioconjugate Chem. 2015;26(11):2233–42. doi:10.1021/acs.bioconjchem.5b00224.
  • Wijdeven MA, van Geel R, Hoogenboom JH, Verkade JMM, Janssen BMG, Hurkmans I, de Bever L, van Berkel SS, van Delft FL. Enzymatic glycan remodeling-metal free click (GlycoConnectTM) provides homogenous antibody-drug conjugates with improved stability and therapeutic index without sequence engineering. MAbs. 2022;14(1):2078466. doi:10.1080/19420862.2022.2078466.
  • Deslignière E, Ehkirch A, Duivelshof BL, Toftevall H, Sjogren J, Guillarme D, D’Atri V, Beck A, Hernandez-Alba O, Cianferani S. State-of-the-art native mass spectrometry and ion mobility methods to monitor homogeneous site-specific antibody-drug conjugates synthesis. Pharm. 2021:14. doi:10.3390/ph14060498.
  • Adumeau P, Raave R, Boswinkel M, Heskamp S, Wessels H, van Gool AJ, Moreau M, Bernhard C, Da Costa L, Goncalves V, et al. Site-specific, platform-based conjugation strategy for the synthesis of dual-labeled immunoconjugates for bimodal PET/NIRF imaging of HER2-positive tumors. Bioconjugate Chem. 2022;33:530–40. doi:10.1021/acs.bioconjchem.2c00049.
  • Verkade JMM, Wijdeven MA, Van Geel R, Janssen BMG, Van Berkel SS, Van Delft FL. A polar sulfamide spacer significantly enhances the manufacturability, stability, and therapeutic index of antibody-drug conjugates. Antibodies. 2018:7. doi:10.3390/antib7010012.
  • Tang F, Wang LX, Huang W. Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody-drug conjugates. Nat Protoc. 2017;12(8):1702–21. doi:10.1038/nprot.2017.058.
  • Zhang X, Ou C, Liu H, Prabhu SK, Li C, Yang Q, Wang LX. General and robust chemoenzymatic method for glycan-mediated site-specific labeling and conjugation of antibodies: facile synthesis of homogeneous antibody-drug conjugates. ACS Chem Biol. 2021;16(11):2502–14. doi:10.1021/acschembio.1c00597.
  • Shi W, Li W, Zhang J, Li T, Song Y, Zeng Y, Dong Q, Lin Z, Gong L, Fan S, et al. One-step synthesis of site-specific antibody-drug conjugates by reprograming IgG glycoengineering with LacNAc-based substrates. Acta Pharm Sin B. 2022;12(5):2417–28. doi:10.1016/j.apsb.2021.12.013.
  • Zhang X, Ou C, Liu H, Wang LX. Synthesis and evaluation of three azide-modified disaccharide oxazolines as enzyme substrates for single-step Fc Glycan-mediated antibody-drug conjugation. Bioconjugate Chem. 2022;33(6):1179–91. doi:10.1021/acs.bioconjchem.2c00142.
  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol. 2011;29(8):735–41. doi:10.1038/nbt.1932.
  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50. doi:10.1146/annurev.immunol.25.022106.141702.
  • Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog. 2005;21(1):11–16. doi:10.1021/bp040016j.
  • van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The emerging importance of IgG Fab Glycosylation in immunity. J Immunol. 2016;196(4):1435–41. doi:10.4049/jimmunol.1502136.
  • Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem. 2007;364(1):8–18. doi:10.1016/j.ab.2007.01.023.
  • Qu Z, Sharkey RM, Hansen HJ, Shih LB, Govindan SV, Shen J, Goldenberg DM, Leung SO. Carbohydrates engineered at antibody constant domains can be used for site-specific conjugation of drugs and chelates. J Immunol Methods. 1998;213(2):131–44. doi:10.1016/s0022-1759(97)00192-0.
  • Janin-Bussat MC, Tonini L, Huillet C, Colas O, Klinguer-Hamour C, Corvaia N, Beck A. Cetuximab Fab and Fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol Biol. 2013;988:93–113. doi:10.1007/978-1-62703-327-5_7.
  • Bosques CJ, Collins BE, Meador JW 3rd, Sarvaiya H, Murphy JL, Dellorusso G, Bulik DA, Hsu IH, Washburn N, Sipsey SF, et al. Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins. Nat Biotechnol. 2010;28(11):1153–56. doi:10.1038/nbt1110-1153.
  • Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans. 2021;49(2):915–31. doi:10.1042/BST20200840.
  • Giddens JP, Lomino JV, DiLillo DJ, Ravetch JV, Wang LX. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc Natl Acad Sci U S A. 2018;115(47):12023–27. doi:10.1073/pnas.1812833115.
  • Wakarchuk WW, Cunningham AM. Capillary electrophoresis as an assay method for monitoring glycosyltransferase activity. Methods Mol Biol. 2003;213:263–74. doi:10.1385/1-59259-294-5:263.
  • Watson DC, Wakarchuk WW, Gervais C, Durocher Y, Robotham A, Fernandes SM, Schnaar RL, Young NM, Gilbert M. Preparation of legionaminic acid analogs of sialo-glycoconjugates by means of mammalian sialyltransferases. Glycoconjugate J. 2015;32(9):729–34. doi:10.1007/s10719-015-9624-4.
  • Stuible M, Burlacu A, Perret S, Brochu D, Paul-Roc B, Baardsnes J, Loignon M, Grazzini E, Durocher Y. Optimization of a high-cell-density polyethylenimine transfection method for rapid protein production in CHO-EBNA1 cells. J Biotechnol. 2018;281:39–47. doi:10.1016/j.jbiotec.2018.06.307.
  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65(3):712–25. doi:10.1002/prot.21123.
  • Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ. GLYCAM06: a generalizable biomolecular force field. Carbohydr J Comput Chem. 2008;29(4):622–55. doi:10.1002/jcc.20820.
  • Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput. 2002;7:310–22.
  • Raymond C, Robotham A, Spearman M, Butler M, Kelly J, Durocher Y. Production of α2,6-sialylated IgG1 in CHO cells. MAbs. 2015;7(3):571–83. doi:10.1080/19420862.2015.1029215.
  • Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, Huang CM, Gill GN, Wiley HS, Cavenee WK. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem. 1997;272(5):2927–35. doi:10.1074/jbc.272.5.2927.