2,851
Views
3
CrossRef citations to date
0
Altmetric
Report

Restoring the biological activity of crizanlizumab at physiological conditions through a pH-dependent aspartic acid isomerization reaction

, , , , , , , , , , , , , , & show all
Article: 2151075 | Received 06 Jul 2022, Accepted 18 Nov 2022, Published online: 15 Dec 2022

References

  • Blair HA. Crizanlizumab: first Approval. Drugs. 2020;80(1):79–12. doi:10.1007/s40265-019-01254-2.
  • Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, Guthrie TH, Knight-Madden J, Alvarez OA, Gordeuk VR, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. New England Journal of Medicine. 2017;376(5):429–39. doi:10.1056/NEJMoa1611770.
  • Du Y, Walsh A, Ehrick R, Xu W, May K, Liu HC. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs. 2012;4(5):578–85. doi:10.4161/mabs.21328.
  • Geiger T, Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides - succinimide-linked reactions that contribute to protein-degradation. Journal of Biological Chemistry. 1987;262(2):785–94. doi:10.1016/S0021-9258(19)75855-4.
  • Stephenson RC, Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. Journal of Biological Chemistry. 1989;264(11):6164–70. doi:10.1016/S0021-9258(18)83327-0.
  • Aswad DW, Paranandi MV, Schurter BT. Isoaspartate in peptides and proteins: formation, significance, and analysis. Journal of Pharmaceutical and Biomedical Analysis. 2000;21(6):1129–36. doi:10.1016/S0731-7085(99)00230-7.
  • Potter SM, Henzel WJ, Aswad DW. In-vitro aging of Calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domain-II, domain-III, and domain-IV. Protein Science. 1993;2(10):1648–63. doi:10.1002/pro.5560021011.
  • Oliyai C, Borchardt RT. Chemical pathways of peptide degradation .IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharmaceutical Research. 1993;10(1):95–102. doi:10.1023/A:1018981231468.
  • Brennan TV, Clarke S. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl-containing and aspartyl-containing peptides. International Journal of Peptide and Protein Research. 1995;45(6):547–53. doi:10.1111/j.1399-3011.1995.tb01318.x.
  • Athiner L, Kindrachuk J, Georges F, Napper S. The influence of protein structure on the products emerging from succinimide hydrolysis. Journal of Biological Chemistry. 2002;277(34):30502–07. doi:10.1074/jbc.M205314200.
  • Chu GC, Chelius D, Xiao G, Khor HK, Coulibaly S, Bondarenko PV. Accumulation of succinimide in a recombinant monoclonal antibody in mildly acidic buffers under elevated temperatures. Pharmaceutical Research. 2007;24(6):1145–56. doi:10.1007/s11095-007-9241-4.
  • Xiao G, Bondarenko PV, Jacob J, Chu GC, Chelius D. 18 O labeling method for identification and quantification of succinimide in proteins. Analytical Chemistry. 2007;79(7):2714–21. doi:10.1021/ac0617870.
  • Chelius D, Rehder DS, Bondarenko PV. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Analytical Chemistry. 2005;77(18):6004–11. doi:10.1021/ac050672d.
  • Capasso S, Kirby AJ, Salvadori S, Sica F, Zagari A. Kinetics and mechanism of the reversible isomerization of aspartic-acid residues in tetrapeptides. Journal of the Chemical Society-Perkin Transactions. 1995;2(3):437–42. doi:10.1039/p29950000437.
  • Xie ML, VanderVelde D, Morton M, Borchardt RT, Schowen RL. pH-induced change in the rate-determining step for the hydrolysis of the Asp/Asn-derived cyclic-imide intermediate in protein degradation. Journal of the American Chemical Society. 1996;118(37):8955–56. doi:10.1021/ja9606182.
  • Daugherty AL, Mrsny RJ. Formulation and delivery issues for monoclonal antibody therapeutics. Advanced Drug Delivery Reviews. 2006;58(5–6):686–706. doi:10.1016/j.addr.2006.03.011.
  • Yan BX, Steen S, Hambly D, Valliere-Douglass J, Bos TV, Smallwood S, Yates Z, Arroll T, Han Y, Gadgil H, et al. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. Journal of Pharmaceutical Sciences. 2009;98(10):3509–21. doi:10.1002/jps.21655.
  • Cacia J, Keck R, Presta LG, Frenz J. Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry. 1996;35(6):1897–903. doi:10.1021/bi951526c.
  • Valliere-Douglass J, Wallace A, Balland A. Separation of populations of antibody variants by fine tuning of hydrophobic-interaction chromatography operating conditions. Journal of Chromatography A. 2008;1214(1–2):81–89. doi:10.1016/j.chroma.2008.10.078.
  • Ouellette D, Chumsae C, Clabbers A, Radziejewski C, Correia I. Comparison of the in vitro and in vivo stability of a succinimide intermediate observed on a therapeutic IgG1 molecule. MAbs. 2013;5(3):432–44. doi:10.4161/mabs.24458.
  • Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K Chen AB, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. Journal of Chromatography B. 2001;752(2):233–45. doi:10.1016/S0378-4347(00)00548-X.
  • Rehder DS, Chelius D, McAuley A, Dillon TM, Xiao G, Crouse-Zeineddini J, Vardanyan L, Perico N, Mukku V, Brems DN, et al. Isomerization of a single aspartyl residue of anti-epidermal growth factor receptor immunoglobulin gamma 2 antibody highlights the role avidity plays in antibody activity. Biochemistry. 2008;47(8):2518–30. doi:10.1021/bi7018223.
  • Arvinte T, Palais C, Green-Trexler E, Gregory S, Mach H, Narasimhan C, Shameem AB. Aggregation of biopharmaceuticals in human plasma and human serum Implications for drug research and development. MAbs. 2013;5(3):491–500. doi:10.4161/mabs.24245.
  • Bults P, Bischoff R, Bakker H, Gietema JA, van de Merbel NC. LC-MS/MS-based monitoring of In vivo protein biotransformation: quantitative determination of trastuzumab and its deamidation products in human plasma. Analytical Chemistry. 2016;88:1871–77.
  • Hurtado PP, O’Connor PB. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry. Mass Spectrometry Reviews. 2012;31(6):609–25. doi:10.1002/mas.20357.
  • Cournoyer JJ, Pittman JL, Ivleva VB, Fallows E, Waskell L, Costello CE, O'Connor PB. Deamidation: differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Science. 2005;14(2):452–63. doi:10.1110/ps.041062905.
  • O’Connor PB, Cournoyer JJ, Pitteri SJ, Chrisman PA, McLuckey SA. Differentiation of aspartic and isoaspartic acids using electron transfer dissociation. Journal of the American Society for Mass Spectrometry. 2006;17(1):15–19. doi:10.1016/j.jasms.2005.08.019.
  • Mirzaei H, Carrasco M. Modern proteomics - sample preparation, analysis and practical applications preface. In: Mirzaei H, Carrasco M, editors. Modern proteomics - sample preparation, analysis and practical applications. 2016. p. V–VI.
  • Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Current Pharmaceutical Biotechnology. 2008;9(6):468–81. doi:10.2174/138920108786786402.
  • Liu M, Cheetham J, Cauchon N, Ostovic J, Ni WQ, Ren D, Zhou ZS. Protein isoaspartate methyltransferase-mediated 18 O-labeling of isoaspartic acid for mass spectrometry analysis. Analytical Chemistry. 2012;84(2):1056–62. doi:10.1021/ac202652z.
  • Klaene JJ, Ni WQ, Alfaro JF, Zhou ZS. Detection and quantitation of succinimide in intact protein via hydrazine trapping and chemical derivatization. Journal of Pharmaceutical Sciences. 2014;103(10):3033–42. doi:10.1002/jps.24074.
  • Fujii N, Sakaue H, Sasaki H, Fujii N. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the asp isomers in crystallins from human cataract lenses. Journal of Biological Chemistry. 2012;287(47):39992–02. doi:10.1074/jbc.M112.399972.
  • Fujii N, Takata T, Fujii N, Aki K, Sakaue H. D-Amino acids in protein: the mirror of life as a molecular index of aging. Biochimica Et Biophysica Acta-Proteins and Proteomics. 2018;1866(7):840–47. doi:10.1016/j.bbapap.2018.03.001.
  • Riggs DL, Gomez SV, Julian RR. Sequence and solution effects on the prevalence of d -Isomers produced by deamidation. Acs Chemical Biology. 2017;12(11):2875–82. doi:10.1021/acschembio.7b00686.
  • Valliere-Douglass J, Jones L, Shpektor D, Kodama P, Waggace A, Balland A, Bailey R, Zhang Y. Separation and characterization of an IgG2 antibody containing a cyclic imide in CDR1 of light chain by hydrophobic interaction chromatography and mass spectrometry. Analytical Chemistry. 2008;80(9):3168–74. doi:10.1021/ac702245c.
  • Doyle HA, Zhou J, Wolff MJ, Harvey BP, Roman RM, Gee RJ, Koski RA, Mamula MJ. Isoaspartyl post-translational modification triggers anti-tumor T and B lymphocyte immunity. Journal of Biological Chemistry. 2006;281(43):32676–83. doi:10.1074/jbc.M604847200.
  • Doyle HA, Gee RJ, Mamula MJ. Altered immunogenicity of isoaspartate containing proteins. Autoimmunity. 2007;40(2):131–37. doi:10.1080/08916930601165180.
  • Cao MY, Xu WC, Niu B, Kabundi I, Luo HB, Prophet M, Chen W, Liu D, Saveliev SV, Urh M, et al. An automated and qualified platform method for site-specific succinimide and deamidation quantitation using low-pH peptide mapping. Journal of Pharmaceutical Sciences. 2019;108(11):3540–49. doi:10.1016/j.xphs.2019.07.019.
  • Du Y, Wang FQ, May K, Xu W, Liu HC. Determination of deamidation artifacts introduced by sample preparation using 18 O-labeling and tandem mass spectrometry analysis. Analytical Chemistry. 2012;84(15):6355–60. doi:10.1021/ac3013362.
  • Liu SS, Moulton KR, Auclair JR, Zhou ZS. Mildly acidic conditions eliminate deamidation artifact during proteolysis: digestion with endoprotease Glu-C at pH 4.5. Amino Acids. 2016;48:1059–67. doi:10.1007/s00726-015-2166-z.
  • Schmid I, Bonnington L, Gerl M, Bomans K, Thaller AL, Wagner K, Schlothauer T, Falkenstein R, Zimmermann B, Kopitz J, et al. Assessment of susceptible chemical modification sites of trastuzumab and endogenous human immunoglobulins at physiological conditions. Communications Biology. 2018;1. doi:10.1038/s42003-018-0032-8.
  • Griaud F, Denefeld B, Lang M, Hensinger H, Haberl P, Berg M. Unbiased in-depth characterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry. MAbs. 2017;9(5):820–30. doi:10.1080/19420862.2017.1313367.