2,825
Views
3
CrossRef citations to date
0
Altmetric
Report

Correlated analytical and functional evaluation of higher order structure perturbations from oxidation of NISTmAb

, , , , , & ORCID Icon show all
Article: 2160227 | Received 17 Aug 2022, Accepted 10 Dec 2022, Published online: 22 Jan 2023

References

  • Wang X, An Z, Luo W, Xia N, Zhao Q. Molecular and functional analysis of monoclonal antibodies in support of biologics development. Protein Cell. 2018;9:74–12. PMID: 28733914. doi:10.1007/s13238-017-0447-x.
  • Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog. 2012;28:608–22. PMID: WOS:000304989800002. doi:10.1002/btpr.1548.
  • Weiss WF, Gabrielson JP, Al-Azzam W, Chen G, Davis DL, Das TK, Hayes DB, Houde D, Singh SK. Technical decision making with higher order structure data: Perspectives on higher order structure characterization from the biopharmaceutical industry. J Pharm Sci. 2016;105:3465–70. PMID: 27743675. doi:10.1016/j.xphs.2016.09.003.
  • Guideline for Industry Quality of biotechnological products: stability testing of biotechnological/biological products. Silver spring (MD): United States Food and Drug Administration; 1996. p. 10.
  • Draft Guidance for Industry Development of Therapeutic Protein Biosimilars: Comparative Analytical Assessment and Other Quality-Related Considerations.Silver Spring (MD): United States Food and Drug Administration; 2019. p. 28.
  • Halley J, Chou YR, Cicchino C, Huang M, Sharma V, Tan NC, Thakkar S, Zhou LL, Al-Azzam W, Cornen S, et al. An industry perspective on forced degradation studies of biopharmaceuticals: survey outcome and recommendations. J Pharm Sci. 2020;109:6–21. PMID: 31563512. doi:10.1016/j.xphs.2019.09.018.
  • Hawe A, Wiggenhorn M, van de Weert M, Garbe JHO, Mahler HC, Jiskoot W. Forced degradation of therapeutic proteins. J Pharm Sci. 2012;101:895–913. PMID: WOS:000299074300003. doi:10.1002/jps.22812.
  • Torosantucci R, Schoneich C, Jiskoot W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res. 2014;31:541–53. PMID: WOS:000332008800002. doi:10.1007/s11095-013-1199-9.
  • Krause ME, Sahin E. Chemical and physical instabilities in manufacturing and storage of therapeutic proteins. Curr Opin Biotechnol. 2019;60:159–67. PMID: WOS:000503095700022. doi:10.1016/j.copbio.2019.01.014.
  • Nowak C, Cheung J, M. Dellatore S, Katiyar A, Bhat R, Sun J, Ponniah G, Neill A, Mason B, Beck A A, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs. 2017;9(8):74–85. PMID: 28853987. doi:10.1007/s13238-017-0447-x.
  • Ji JA, Zhang B, Cheng W, Wang YJ. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharm Sci. 2009;98:4485–500. PMID: 19455640. doi:10.1002/jps.21746.
  • Dyck YFK, Rehm D, Joseph JF, Winkler K, Sandig V, Jabs W, Parr MK. Forced degradation testing as complementary tool for biosimilarity assessment. Bioengineering (Basel). 2019;6 PMID: 31330921. doi:10.3390/bioengineering6030062.
  • Chen Y, Doud E, Stone T, Xin L, Hong W, Li Y. Rapid global characterization of immunoglobulin G1 following oxidative stress. MAbs. 2019;11:1089–100. PMID: 31156028. doi:10.1080/19420862.2019.1625676.
  • Konermann L, Tong X, Pan Y. Protein structure and dynamics studied by mass spectrometry: h/D exchange, hydroxyl radical labeling, and related approaches. J Mass Spectrom. 2008;43:1021–36. PMID: 18523973. doi:10.1002/jms.1435.
  • Yan Y, Wei H, Fu Y, Jusuf S, Zeng M, Ludwig R, Krystek SR Jr., Chen G, Tao L, Das TK. Isomerization and oxidation in the complementarity-determining regions of a monoclonal antibody: a study of the modification-structure-function correlations by hydrogen-deuterium exchange mass spectrometry. Anal Chem. 2016;88:2041–50. PMID: 26824491. doi:10.1021/acs.analchem.5b02800.
  • Gao X, Ji JA, Veeravalli K, Wang YJ, Zhang T, Mcgreevy W, Zheng K, Kelley RF, Laird MW, Liu J, et al. Effect of individual Fc methionine oxidation on FcRn binding: met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. J Pharm Sci. 2015;104:368–77. PMID: 25175600. doi:10.1002/jps.24136.
  • Glover ZK, Wecksler A, Aryal B, Mehta S, Pegues M, Chan W, Lehtimaki M, Luo A, Sreedhara A, Rao VA. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species. MAbs. 2022;14:2122957. PMID: 36151884. doi:10.1080/19420862.2022.2122957.
  • Giddens JP, Schiel JE. Ligand-bound forced degradation as a strategy to generate functionally relevant analytical challenge materials for assessment of CQAs. Front Mol Biosci. 2022:789973. doi:10.3389/fmolb.2022.789973.
  • Schiel JE, Mire-Sluis A, Davis D. Monoclonal antibody therapeutics: the need for biopharmaceutical reference materials. In: Schiel JE, Davis DL, Borisov OL, editors. State-of-the-art and emerging technologies for therapeutic monoclonal antibody characterization, vol 1 - monoclonal antibody therapeutics: structure, function, and regulatory space. Washington (DC): AMerican Chemical Society; 2014. p. 1–34.
  • Schiel JE, Turner A. The NISTmAb reference material 8671 lifecycle management and quality plan. Anal Bioanal Chem. 2018;410:2067–78.
  • Arbogast LW, Brinson RG, Marino JP. Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance. Anal Chem. 2015;87:3556–61. PMID: 25728213. doi:10.1021/ac504804m.
  • Arbogast LW, Delaglio F, Schiel JE, Marino JP. Multivariate analysis of two-dimensional 1H, 13C methyl NMR spectra of monoclonal antibody therapeutics to facilitate assessment of higher order structure. Anal Chem. 2017;89:11839–45. PMID: 28937210. doi:10.1021/acs.analchem.7b03571.
  • Shah DD, Singh SM, Mallela KMG. Effect of chemical oxidation on the higher order structure, stability, aggregation, and biological function of interferon alpha-2a: role of local structural changes detected by 2D NMR. Pharm Res. 2018;35:232. PMID: 30324266. doi:10.1007/s11095-018-2518-y.
  • Bandi S, Singh SM, Shah DD, Upadhyay V, Mallela KMG. 2D NMR analysis of the effect of asparagine deamidation versus methionine oxidation on the structure, stability, aggregation, and function of a therapeutic protein. Mol Pharm. 2019;16:4621–35. PMID: 31483994. doi:10.1021/acs.molpharmaceut.9b00719.
  • Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, Li L, Brems DN, Remmele RL. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry. 2008;47:5088–100. PMID: WOS:000255429200004. doi:10.1021/bi7O2238b.
  • Majumder S, Saati A, Philip S, Liu LL, Stephens E, Rouse JC, Alphonse Ignatius A. Utility of high resolution NMR methods to probe the impact of chemical modifications on higher order structure of monoclonal antibodies in relation to antigen binding. Pharm Res. 2019;36:130. PMID: 31264003. doi:10.1007/s11095-019-2652-1.
  • Brinson RG, Elliott KW, Arbogast LW, Sheen DA, Giddens JP, Marino JP, Delaglio F. Principal component analysis for automated classification of 2D spectra and interferograms of protein therapeutics: influence of noise, reconstruction details, and data preparation. J Biomol NMR. 2020;74:643–56. PMID: 32700053. doi:10.1007/s10858-020-00332-y.
  • Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Identification and quantification of oxidation products in full-length biotherapeutic antibodies by NMR spectroscopy. Anal Chem. 2020;92:9666–73. PMID: 32530275. doi:10.1021/acs.analchem.0c00965.
  • Taraban MB, Truong HC, Feng Y, Jouravleva EV, Anisimov MA, Yu YB. Water proton NMR for in situ detection of insulin aggregates. J Pharm Sci. 2015;104:4132–41. PMID: 26344698. doi:10.1002/jps.24633.
  • Taraban MB, DePaz RA, Lobo B, Yu YB. Water proton NMR: a tool for protein aggregation characterization. Anal Chem. 2017;89:5494–502. PMID: 28440620. doi:10.1021/acs.analchem.7b00464.
  • Taraban MB, Briggs KT, Yu YB. Magnetic resonance relaxometry for determination of protein concentration and aggregation. Curr Protoc Protein Sci. 2020;99:e102. PMID: 31869512. doi:10.1002/cpps.102.
  • Taraban MB, DePaz RA, Lobo B, Yu YB. Use of water proton NMR to characterize protein aggregates: gauging the response and sensitivity. Anal Chem. 2019;91:4107–15. PMID: 30767509. doi:10.1021/acs.analchem.8b05733.
  • Brinson RG, Arbogast LW, Marino JP, Delaglio F. Best practices in utilization of 2D-NMR spectral data as the input for chemometric analysis in biopharmaceutical applications. J Chem Inf Model. 2020;60:2339–55. PMID: 32249579. doi:10.1021/acs.jcim.0c00081.
  • Saro D, Baker A, Hepler R, Spencer S, Bruce R, LaBrenz S, Chiu M, Davis D, Lang SE. Developability Assessment of a Proposed NIST Monoclonal Antibody. In: Schiel JE, Davis DL, Borisov OV, editors. State-of-the-art and emerging technologies for therapeutic monoclonal antibody characterization volume 2 biopharmaceutical characterization: the nistmab case study. Developability assessment of a proposed NIST monoclonal antibody. Washington (D.C): American Chemical Society; 2015. p. 329–55.
  • Turner A, Yandrofski K, Telikepalli S, King J, Heckert A, Filliben J, Ripple D, Schiel JE. Development of orthogonal NISTmAb size heterogeneity control methods. Anal Bioanal Chem. 2018;410:2095–110. PMID: 29428991. doi:10.1007/s00216-017-0819-3.
  • Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, McKelvey T, Li Y, Drummond J, Prueksaritanont T, Vlasak J. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol Immunol. 2009;46:1878–82. PMID: 19269032. doi:10.1016/j.molimm.2009.02.002.
  • Gaza-Bulseco G, Faldu S, Hurkmans K, Chumsae C, Liu H. Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;870:55–62. PMID: 18567545. doi:10.1016/j.jchromb.2008.05.045.
  • Graille M, Stura EA, Housden NG, Beckingham JA, Bottomley SP, Beale D, Taussig MJ, Sutton BJ, Gore MG, Charbonnier JB. Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure. 2001;9:679–87. PMID: 11587642. doi:10.1016/s0969-2126(01)00630-x.
  • Paloni M, Cavallotti C. Molecular modeling of the interaction of protein L with antibodies. ACS Omega. 2017;2:6464–72. PMID: 31457247. doi:10.1021/acsomega.7b01123.
  • Gallagher DT, Karageorgos I, Hudgens JW, Galvin CV. Data on crystal organization in the structure of the Fab fragment from the NIST reference antibody. RM 8671. Data Brief. 2018;16:29–36. PMID: 29167817. doi:10.1016/j.dib.2017.11.013.
  • Gallagher DT, Galvin CV, Karageorgos I. Structure of the Fc fragment of the NIST reference antibody RM8671. Acta Crystallogr F Struct Biol Commun. 2018;74:524–29. PMID: 30198883. doi:10.1107/S2053230X18009834.
  • Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, et al. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs. 2018;10:513–38. PMID: 29513619. doi:10.1080/19420862.2018.1438797.
  • Wen J, Batabyal D, Knutson N, Lord H, Wikström M. A comparison between emerging and current biophysical methods for the assessment of higher-order structure of biopharmaceuticals. J Pharm Sci. 2020;109:247–53. PMID: 31669605. doi:10.1016/j.xphs.2019.10.026.
  • Taraban MB, Wang Y, Briggs KT, Yu YB. Inspecting insulin products using water proton NMR. I. Noninvasive vs invasive inspection. J Diabetes Sci Technol. 2021;16:1410–18. PMID: 34111968. doi:10.1177/19322968211023806.
  • Rossler P, Mathieu D, Gossert AD. Enabling NMR studies of high molecular weight systems without the need for deuteration: the XL-ALSOFAST experiment with delayed decoupling. Angew Chem Int Ed Engl. 2020;59:19329–37. PMID: 32743971. doi:10.1002/anie.202007715.
  • Guidance for Industry Clinical Pharmacology Data to Support a Demonstration of Biosimilarity to a Reference Product. Silver Spring (MD): United States Food and Drug Administration; 2016. p. 15.
  • Meiboom S, Gill D. Modified spin‐echo method for measuring nuclear relaxation times. Rev Sci Instrum.1958;688–91. doi:10.1063/1.1716296.
  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93. PMID: 8520220.
  • Grzesiek S, Bax A. The importance of not saturating water in protein NMR. Application to sensitivity enhancement and NOE measurements. J Am Chem Soc. 1993;115:12593–94. PMID: WOS:A1993MQ10000052. doi:10.1021/ja00079a052.
  • Arbogast LW, Delaglio F, Brinson RG, Marino JP. Assessment of the Higher-order structure of formulated monoclonal antibody therapeutics by 2D Methyl correlated NMR and principal component analysis. Curr Protoc Protein Sci. 2020;100:e105. PMID: 32407007. doi:10.1002/cpps.105.
  • Wold H. Estimation of principal components and related models by iterative least squares. In: estimation of principal components and related models by iterative least squares. In: Krishnaiah, PR, editor. Multivariate analysis-III. New York (NY): Academic Press; 1966. p. 391–420.