4,774
Views
2
CrossRef citations to date
0
Altmetric
Report

TRYBE®: an Fc-free antibody format with three monovalent targeting arms engineered for long in vivo half-life

, , , , , , , , , , , , , , , , & show all
Article: 2160229 | Received 06 Jul 2022, Accepted 15 Dec 2022, Published online: 14 Feb 2023

References

  • Lu R-M, Hwang Y-C, Liu I-J, Lee -C-C, Tsai H-Z, Li H-J, Wu H-C. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1. doi:10.1186/s12929-019-0592-z. PMID: 31894001
  • Deshaies RJ. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature. 2020;580(7803):329–20. doi:10.1038/s41586-020-2168-1. PMID: 32296187
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9(2):182–212. doi:10.1080/19420862.2016.1268307. PMID: 8071970
  • Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, Diedrich H, Topp MS, Brüggemann M, Horst H-A, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31. PMID: 29358182. doi:10.1182/blood-2017-08-798322.
  • Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M, Wei A, Dombret H, Foà R, Bassan R, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47. PMID: 28249141. doi:10.1056/NEJMoa1609783.
  • Nguyen TH, Loux N, Dagher I, Vons C, Carey K, Briand P, Hadchouel M, Franco D, Jouanneau J, Schwall R, Weber A. Improved gene transfer selectivity to hepatocarcinoma cells by retrovirus vector displaying single-chain variable fragment antibody against c-Met. Cancer Gene Ther. 2003. 10(11): 840–9. doi:10.1038/sj.cgt.7700640. PMID: 14605670.
  • Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res. 2006 Oct 15;12(20 Pt 1):6144–52. doi: 10.1158/1078-0432.CCR-05-1418. PMID: 17062691.
  • Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio PM. Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci. 1998;111(2):237–47. doi:10.1242/jcs.111.2.237. PMID: 9405310
  • Ohashi K, Marion PL, Nakai H, Meuse L, Cullen JM, Bordier BB, Schwall R, Greenberg HB, Glenn JS, Kay MA. Sustained survival of human hepatocytes in mice: A model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nat Med. 2000 Mar;6(3):327–31. doi: 10.1038/73187. PMID: 10700236.
  • Steensgaard J, Johansen AS. Biochemical aspects of immune complex formation and immune complex diseases. Allergy. 1980;35(6):457–72. doi:10.1111/j.1398-9995.1980.tb01794.x. PMID: 6451188
  • Rojko JL, Evans MG, Price SA, Han B, Waine G, DeWitte M, Haynes J, Freimark B, Martin P, Raymond JT, et al. Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related Immune complexes:review and case studies. Toxicol Pathol. 2014;42:725–64. PMID: 24705884. doi:10.1177/0192623314526475.
  • Krishna M, Nadler SG. Immunogenicity to Biotherapeutics – the Role of Anti-drug Immune Complexes. Front Immunol. 2016;7 PMID: 26870037. doi:10.3389/fimmu.2016.00021.
  • Bhatta P, Dave E, Heywood SP, Humphreys DP. 2015. Multispecific antibody constructs. US11345760 BBUS11345760 BBMultispecific antibody constructs. US11345760 BB US11345760 BB.
  • Labrijn AF, Janmaat ML, Reichert JM, Parren P. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608. doi:10.1038/s41573-019-0028-1. PMID: 31175342
  • Suzuki M, Kato C, Kato A. Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies. J Toxicol Pathol. 2015;28(3):133–39. doi:10.1293/tox.2015-0031. PMID: 6441475
  • Acheampong DO, Adokoh CK, Ampomah P, Agyirifor DS, Dadzie I, Ackah FA, Asiamah EA. Bispecific Antibodies (bsAbs): promising immunotherapeutic agents for cancer therapy. Protein Pept Lett. 2017;24(5):456–65. doi:10.2174/0929866524666170120095128. PMID: 28117014
  • Dave E, Adams R, Zaccheo O, Carrington B, Compson JE, Dugdale S, Airey M, Malcolm S, Hailu H, Wild G, et al. Fab-dsFv: a bispecific antibody format with extended serum half-life through albumin binding. MAbs. 2016;8(7):1319–35. PMID: 27532598. doi:10.1080/19420862.2016.1210747.
  • Reiter Y, Brinkmann U, Kreitman RJ, Jung S-H, Lee B, Pastan I. Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry. 1994;33(18):5451–59. doi:10.1021/bi00184a014. PMID: 7910034
  • Bera TK, Onda M, Brinkmann U, Pastan I. A bivalent disulfide-stabilized fv with improved antigen binding to erbb211. J Mol Biol. 1998;281(3):475–83. doi:10.1006/jmbi.1998.1948. PMID: 9698563
  • Rajagopal V, Pastan I, Kreitman RJ. A form of anti-Tac(Fv) which is both single-chain and disulfide stabilized: comparison with its single-chain and disulfide-stabilized homologs. Protein Engineering Design and Selection. 1997;10(12):1453–59. doi:10.1093/protein/10.12.1453. PMID: 9543007
  • Chandramohan V, Bao X, Keir ST, Pegram CN, Szafranski SE, Piao H, Wikstrand CJ, McLendon RE, Kuan C-T, Pastan IH, et al. Construction of an immunotoxin, D2C7-(scdsFv)-PE38KDEL, targeting EGFRwt and EGFRvIII for brain tumor therapy. Clin Cancer Res. 2013;19(17):4717–27. PMID: 23857604. doi:10.1158/1078-0432.Ccr-12-3891.
  • Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z. Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. J Immunol Methods. 2002;267(2):213–26. doi:10.1016/s0022-1759(02)00148-5. PMID: 12165442
  • Iizuka A, Nonomura C, Ashizawa T, Kondou R, Ohshima K, Sugino T, Mitsuya K, Hayashi N, Nakasu Y, Maruyama K, et al. A T-cell–engaging B7-H4/CD3-bispecific Fab-scFv Antibody targets human breast cancer. Clin Cancer Res. 2019;25(9):2925–34. PMID: 30737243. doi:10.1158/1078-0432.Ccr-17-3123.
  • Schoonjans R, Willems A, Schoonooghe S, Fiers W, Grooten J, Mertens N. Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J Immunol. 2000;165(12):7050–57. doi:10.4049/jimmunol.165.12.7050. PMID: 11120833
  • Schoonooghe S, Burvenich I, Vervoort L, De Vos F, Mertens N, Grooten J. PH1-derived bivalent bibodies and trivalent tribodies bind differentially to shed and tumour cell-associated MUC1. Protein Eng Des Sel. 2010;23(9):721–28. doi:10.1093/protein/gzq044. PMID: 20616115
  • Glorius P, Baerenwaldt A, Kellner C, Staudinger M, Dechant M, Stauch M, Beurskens FJ, Parren PW, Winkel JG, Valerius T, et al. The novel tribody [(CD20)2xCD16] efficiently triggers effector cell-mediated lysis of malignant B cells. Leukemia. 2013;27(1):190–201. PMID: 22660187. doi:10.1038/leu.2012.150.
  • Schoonooghe S. Engineering and expression of bibody and tribody constructs in mammalian cells and in the yeast Pichia pastoris. Methods Mol Biol. 2012;899:157–75. PMID: 22735952. doi:10.1007/978-1-61779-921-1_10.
  • Sand KM, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT. Unraveling the Interaction between FcRn and Albumin: opportunities for Design of Albumin-Based Therapeutics. Front Immunol. 2014;5:682. PMID: 25674083. doi:10.3389/fimmu.2014.00682.
  • Adams R, Griffin L, Compson JE, Jairaj M, Baker T, Ceska T, West S, Zaccheo O, Dave E, Lawson AD, et al. Extending the half-life of a fab fragment through generation of a humanized anti-human serum albumin Fv domain: an investigation into the correlation between affinity and serum half-life. MAbs. 2016;8(7):1336–46. PMID: 27315033. doi:10.1080/19420862.2016.1185581.
  • Webber KO. Preparation and characterization of a disulfide-stabilized Fv fragment of the anti-Tac antibody: comparison with its single-chain analog. Mol Immunol. 1995;32(4):249–58. doi:10.1016/0161-5890(94)00150-y. PMID: 7723770
  • Jung S-H, Pastan I, Lee B. Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3. Proteins. 1994;19(1):35–47. doi:10.1002/prot.340190106. PMID: 8066084
  • Glockshuber R, Malia M, Pfitzinger I, Plueckthun A. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry. 1990;29(6):1362–67. doi:10.1021/bi00458a002. PMID: 2110478
  • Zhu Z, Presta LG, Zapata G, Carter P. Remodeling domain interfaces to enhance heterodimer formation. Protein Sci. 1997;6(4):781–88. doi:10.1002/pro.5560060404. PMID: 9098887
  • Brinkmann U, Reiter Y, Jung SH, Lee B, Pastan I. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci U S A. 1993;90(16):7538–42. doi:10.1073/pnas.90.16.7538. 8356052
  • Weatherill EE, Cain KL, Heywood SP, Compson JE, Heads JT, Adams R, Humphreys DP. Towards a universal disulphide stabilised single chain Fv format: importance of interchain disulphide bond location and vL-vH orientation. Protein Eng Des Sel. 2012;25(7):321–29. doi:10.1093/protein/gzs021. PMID: 22586154
  • Batra JK, Kasprzyk PG, Bird RE, Pastan I, King CR. Recombinant anti-erbB2 immunotoxins containing Pseudomonas exotoxin. Proc Natl Acad Sci USA. 1992;89:5867–71. doi: 10.1073/pnas.89.13.5867. PMID: 1352878.
  • Demarest SJ, Glaser SM. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel. 2008;11:675–87.
  • Reiter Y, Brinkmann U, Lee B, Pastan I. Engineering antibody Fv fragments for cancer detection and therapy: bisulfide-stabilized Fv fragments. Nat Biotechnol. 1996;14(10):1239–45. doi:10.1038/nbt1096-1239. PMID: 9631086
  • Holliger P, Prospero T, Winter G. ”Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A. 1993;90(14):6444–48. doi:10.1073/pnas.90.14.6444. PMID: 8341653
  • Bhatta P, Humphreys DP. Relative Contribution of Framework and CDR Regions in Antibody Variable Domains to Multimerisation of Fv- and scFv-Containing Bispecific Antibodies. Antibodies. 2018;7(3). doi:10.3390/antib7030035. PMID: 31544885
  • Schanzer J, Jekle A, Nezu J, Lochner A, Croasdale R, Dioszegi M, Zhang J, Hoffmann E, Dormeyer W, Stracke J, et al. Development of tetravalent, bispecific CCR5 antibodies with antiviral activity against CCR5 monoclonal antibody-resistant HIV-1 strains. Antimicrob Agents Chemother. 2011;55(5):2369–78. PMID: 21300827. doi:10.1128/aac.00215-10.
  • Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontology 2000. 2015;69(1):142–59. doi:10.1111/prd.12083. PMID: 26252407
  • Zheng S, Shen F, Jones B, Fink D, Geist B, Nnane I, Zhou Z, Hall J, Malaviya R, Ort T, et al. Characterization of concurrent target suppression by JNJ-61178104, a bispecific antibody against human tumor necrosis factor and interleukin-17A. MAbs. 2020;12(1):1770018. PMID: 32544369. doi:10.1080/19420862.2020.1770018.
  • Hsieh CM, Cuff C, Tarcsa E, Hugunin M. (Abstract) discovery and characterization of ABT-122, An Anti-TNF/IL-17 DVD-Ig(TM) molecule as a potential therapeutic candidate for rheumatoid arthritis. ACR/ARHP Annual Meeting 2013; New Orleans, USA. p. 1427.
  • Chen D-Y, Chen Y-M, Chen -H-H, Hsieh C-W, Lin -C-C, Lan J-L. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res Ther. 2011;13(4):R126. doi:10.1186/ar3431. PMID: 21801431
  • Humphreys DT, Wilson MR. MODES OF L929 CELL DEATH INDUCED BY TNF-α AND OTHER CYTOTOXIC AGENTS. Cytokine. 1999;11(10):773–82. doi:10.1006/cyto.1998.0492. PMID: 10525316
  • Mohler KM, Torrance DS, Smith CA, Goodwin RG, Stremler KE, Fung VP, Madani H, Widmer MB. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol. 1993;151(3):1548–61. PMID: 8393046
  • Gupta RK, Gracias DT, Figueroa DS, Miki H, Miller J, Fung K, Ay F, Burkly L, Croft M. TWEAK functions with TNF and IL-17 on keratinocytes and is a potential target for psoriasis therapy. Sci Immunol. 2021;6(65):eabi8823. doi:10.1126/sciimmunol.abi8823. PMID: 34797693
  • Robert M, Miossec P. IL-17 in Rheumatoid Arthritis and precision medicine: from synovitis expression to circulating bioactive levels. Front Med. 2019;5:364. PMID: 30693283. doi:10.3389/fmed.2018.00364.
  • Chen W, Wang Q, Ke Y, Lin J. Neutrophil function in an inflammatory milieu of Rheumatoid Arthritis. J Immunol Res. 2018;2018:8549329. PMID: 30622982. doi:10.1155/2018/8549329.
  • Bhatta P, Whale KD, Sawtell AK, Thompson CL, Rapecki SE, Cook DA, Twomey BM, Mennecozzi M, Starkie LE, Barry EMC, et al. Bispecific antibody target pair discovery by high-throughput phenotypic screening using in vitro combinatorial Fab libraries. MAbs. 2021;13(1):1859049. PMID: 33487120. doi:10.1080/19420862.2020.1859049.
  • Zahnd C, Spinelli S, Luginbuhl B, Amstutz P, Cambillau C, Pluckthun A. Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J Biol Chem. 2004;279(18):18870–77. doi:10.1074/jbc.M309169200. PMID: 14754898
  • Schlereth B. The Yin and yang of two targets and what about immunogenicity? 7th Annual Biologics Symposium; London, UK. 2017.
  • Steiner D, Merz FW, Sonderegger I, Gulotti-Georgieva M, Villemagne D, Phillips DJ, Forrer P, Stumpp MT, Zitt C, Binz HK. Half-life extension using serum albumin-binding DARPin® domains. Protein Eng Des Sel. 2017;30(9):583–91. doi:10.1093/protein/gzx022. PMID: 29088432
  • Binz HK, Bakker TR, Phillips DJ, Cornelius A, Zitt C, Göttler T, Sigrist G, Fiedler U, Ekawardhani S, Dolado I, et al. Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin® drug candidate. MAbs. 2017;9(8):1262–69. PMID: 29035637. doi:10.1080/19420862.2017.1305529.
  • Holt LJ, Basran A, Jones K, Chorlton J, Jespers LS, Brewis ND, Tomlinson IM. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng Des Sel. 2008;21(5):283–88. doi:10.1093/protein/gzm067. PMID: 18387938
  • Xenaki KT, Dorresteijn B, Muns JA, Adamzek K, Doulkeridou S, Houthoff H, Oliveira S, van Bergen En Henegouwen PM. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics. 2021;11(11):5525–38. doi:10.7150/thno.57510. PMID: 33859761
  • Pan H, Su Y, Xie Y, Wang W, Qiu W, Chen W, Lu W, Lu Z, Wang W, Shang A. Everestmab, a novel long-acting GLP-1/anti GLP-1R nanobody fusion protein, exerts potent anti-diabetic effects. Artif Cells, Nanomed Biotechnol. 2020;48(1):854–66. doi:10.1080/21691401.2020.1770268. PMID: 32468873
  • de Smit H, Ackerschott B, Tierney R, Stickings P, Harmsen MM. A novel single-domain antibody multimer that potently neutralizes tetanus neurotoxin. Vaccine X. 2021;8:100099. doi:10.1016/j.jvacx.2021.100099.
  • Mandrup OA, Ong SC, Lykkemark S, Dinesen A, Rudnik-Jansen I, Dagnæs-Hansen NF, Andersen JT, Alvarez-Vallina L, Howard KA. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Commun Biol. 2021;4(1):310. doi:10.1038/s42003-021-01790-2. PMID: 33686177
  • Xu T, Ying T, Wang L, Zhang XD, Wang Y, Kang L, Huang T, Cheng L, Wang L, Zhao Q. A native-like bispecific antibody suppresses the inflammatory cytokine response by simultaneously neutralizing tumor necrosis factor-alpha and interleukin-17A. Oncotarget. 2017;8(47):81860–72. doi:10.18632/oncotarget.19899. PMID: 29137228
  • Alzabin S, Abraham SM, Taher TE, Palfreeman A, Hull D, McNamee K, Jawad A, Pathan E, Kinderlerer A, Taylor PC, et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann Rheum Dis. 2012;71(10):1741–48. PMID: 22550316. doi:10.1136/annrheumdis-2011-201024.
  • Silacci M, Lembke W, Woods R, Attinger-Toller I, Baenziger-Tobler N, Batey S, Santimaria R, von der Bey U, Koenig-Friedrich S, Zha W, et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. MAbs. 2016;8(1):141–49. PMID: 26390837. doi:10.1080/19420862.2015.1093266.
  • A Study to Investigate the Safety and Efficacy of ABT-122 given with methotrexate in subjects with active Rheumatoid Arthritis Who Have an Inadequate Response to Methotrexate; [accessed 2016 Nov 11]. Available from: https://clinicaltrials.gov/ct2/show/NCT02141997.
  • Safety and tolerability study of COVA322 in patients with stable chronic moderate-to-severe plaque psoriasis; [accessed 2016 Mar 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT02243787.
  • Schlereth B. COVA322 case study: development of a novel anti-TNF/IL-17A bispecific FynomAb. 7th Open Scientific EIP Symposium on Immunogenicity of Biopharmaceuticals Lisbon, Portugal, 2015. https://e-i-p.eu/media/pages/symposiums/2015-lisbon/be88af614d-1644227751/bernd-schlereth.pdf.
  • Kroenke MA, Milton MN, Kumar S, Bame E, White JT. Immunogenicity risk assessment for multi-specific therapeutics. AAPS J. 2021;23(6):115. doi:10.1208/s12248-021-00642-5. PMID: 34741215
  • Kohno T, Tam LT, Stevens SR, Louie JS. Binding characteristics of tumor necrosis factor receptor-Fc fusion proteins vs anti-tumor necrosis factor mAbs. J Investig Dermatol Symp Proc. 2007;12:5–8. doi: 10.1038/sj.jidsymp.5650034. PMID: 17502862.
  • Aerts NE, De Knop KJ, Leysen J, et al. Increased IL-17 production by peripheral Thelper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology. 2010;49(12):2264–72. doi:10.1093/rheumatology/keq224. PMID: 20724433.
  • Hoefman S, Ottevaere I, Baumeister J, Sargentini-Maier ML. Pre-Clinical Intravenous serum pharmacokinetics of albumin binding and Non-Half-Life extended Nanobodies®. Antibodies. 2015;4(3):141–56. doi:10.3390/antib4030141.
  • Hussain H, Patel T, Ozanne AMS, Vito D, Ellis M, Hinchliffe M, Humphreys DP, Stephens PE, Sweeney B, White J, et al. A comparative analysis of recombinant Fab and Full-length antibody production in Chinese hamster ovary cells. Biotechnol Bioeng. 2021;118(12):4815–28. PMID: 34585737. doi:10.1002/bit.27944.
  • Heywood SP, Wild GB. METHOD FOR PROTEIN PURIFICATION. 2016.
  • Lai P-K, Ghag G, Yu Y, Juan V, Fayadat-Dilman L, Trout BL. Differences in human IgG1 and IgG4 S228P monoclonal antibodies viscosity and self-interactions: experimental assessment and computational predictions of domain interactions. mAbs. 2021;13(1):1991256. doi:10.1080/19420862.2021.1991256. PMID: 34747330
  • Palm T, Sahin E, Gandhi R, Khossravi M. The importance of the concentration-temperature-viscosity relationship for the development of biologics. Bioprocess Int. 2015;13(3).
  • Tomar DS, Li L, Broulidakis MP, Luksha NG, Burns CT, Singh SK, Kumar S. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs. 2017;9:476–89. PMID: 28125318. doi:10.1080/19420862.2017.1285479.
  • Sawant MS, Streu CN, Wu L, Tessier PM. Toward drug-like multispecific antibodies by design. Int J Mol Sci. 2020;21:7496. 33053650.
  • Nie S, Wang Z, Moscoso-Castro M, D’Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther. 2020;3:18–62. doi:10.1093/abt/tbaa003.
  • Reiter Y, Brinkmann U, Jung SH, Pastan I, Lee B. Disulfide stabilization of antibody Fv: computer predictions and experimental evaluation. Protein Eng. 1995;8:1323–31. PMID: 8869646. doi:10.1093/protein/8.12.1323.
  • Boss MA, Kenten JH, Wood CR, Emtage JS. Assembly of functional antibodies from immunoglobulin heavy and light chains synthesised in E. coli. Nucleic Acids Res. 1984;12:3791–806. PMID: 6328437. doi:10.1093/nar/12.9.3791.
  • Cabilly S, Riggs AD, Pande H, Shively JE, Holmes WE, Rey M, Perry LJ, Wetzel R, Heyneker HL. Generation of antibody activity from immunoglobulin polypeptide chains produced in Escherichia coli. Proc Natl Acad Sci U S A. 1984;81:3273–77. PMID: 6374653. doi:10.1073/pnas.81.11.3273.
  • Huston JS, Mudgett-Hunter M, Tai MS, McCartney J, Warren F, Haber E, Oppermann H. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 1991;203:46–88. PMID: 1762568. doi:10.1016/0076-6879(91)03005-2.
  • Mannik M. Mechanisms of tissue deposition of immune complexes. J Rheumatol Suppl. 1987;14(13):35–42. PMID: 2956419
  • Mayadas TN, Tsokos GC, Tsuboi N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation. 2009;120:2012–24. PMID: 19917895. doi:10.1161/circulationaha.108.771170.
  • Chandramohan V, Pegram CN, Piao H, Szafranski SE, Kuan CT, Pastan IH, Bigner DD. Production and quality control assessment of a GLP-grade immunotoxin, D2C7-(scdsFv)-PE38KDEL, for a phase I/II clinical trial. Appl Microbiol Biotechnol. 2017;101:2747–66. PMID: 28013405. doi:10.1007/s00253-016-8063-x.
  • Lin AY, Dinner SN. Moxetumomab pasudotox for hairy cell leukemia: preclinical development to FDA approval. Blood Advances. 2019;3:2905–10. PMID: 31594764. doi:10.1182/bloodadvances.2019000507.
  • Alewine C, Ahmad M, Peer CJ, Hu ZI, Lee MJ, Yuno A, Kindrick JD, Thomas A, Steinberg SM, Trepel JB, et al. Phase I/II study of the Mesothelin-targeted immunotoxin LMB-100 with Nab-Paclitaxel for Patients with advanced pancreatic adenocarcinoma. Clin Cancer Res. 2020;26:828–36. PMID: 31792036. doi:10.1158/1078-0432.Ccr-19-2586.
  • Deokar V, Sharma A, Mody R, Volety SM. Comparison of strategies in development and manufacturing of low viscosity, ultra-high concentration Formulation for IgG1 antibody. J Pharm Sci. 2020;109:3579–89. PMID: 32946895. doi:10.1016/j.xphs.2020.09.014.
  • Zhang Z, Liu Y. Recent progresses of understanding the viscosity of concentrated protein solutions. Curr Opin Chem Eng. 2017;16:48–55. doi:10.1016/j.coche.2017.04.001.
  • Zubler RH, Erard F, Lees RK, Van Laer M, Mingari C, Moretta L, MacDonald HR. Mutant EL-4 thymoma cells polyclonally activate murine and human B cells via direct cell interaction. J Immunol. 1985;134:3662–68. PMID: 3886789.
  • Lightwood D, O’Dowd V, Carrington B, Veverka V, Carr MD, Tservistas M, Henry AJ, Smith B, Tyson K, Lamour S, et al. The discovery, engineering and characterisation of a highly potent anti-human IL-13 fab fragment designed for administration by inhalation. J Mol Biol. 2013;425:577–93. PMID: 23219467. doi:10.1016/j.jmb.2012.11.036.
  • Adams R, Maroof A, Baker T, Lawson ADG, Oliver R, Paveley R, Rapecki S, Shaw S, Vajjah P, West S, et al. Bimekizumab, a novel humanized IgG1 antibody that neutralizes both IL-17A and IL-17F. Front Immunol. 2020;11:1894. PMID: 32973785. doi:10.3389/fimmu.2020.01894.
  • Engler C, Marillonnet S. Golden Gate cloning. Methods Mol Biol. 2014;1116:119–31. PMID: 24395361. doi:10.1007/978-1-62703-764-8_9.
  • Grabulovski D, Melkko MS, Mourlane F, Brack SS, Bertschinger J. IL-17 binding compounds and medical uses thereof. 2011.
  • Ghayur T, Jijie G, Harris M, Goodreau C, Saluja S. Dual specific binding proteins directed against il-1 beta and il-17. 2014.
  • Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A. A CHO cell line engineered to express XBP1 and ERO1-Lα has increased levels of transient protein expression. Biotechnol Prog. 2013;29:697–706. PMID: 23335490. doi:10.1002/btpr.1693.
  • Konarev PV, Volkov SAV VV, Koch MHJ, Svergun DI. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr. 2003;36:1277–82. doi:10.1107/s0021889803012779.
  • Guinier A, Fournet G. Small-angle scattering of X-rays. New York, USA: Wiley; 1955.
  • Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Int Union Crystallogr. 1992;25:495–503.
  • Rambo RP, Tainer JA. Accurate assessment of mass, models and resolution by small-angle scattering. Nature. 2013;496:477–81. PMID: 23619693. doi:10.1038/nature12070.
  • Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, Kikhney AG, Hajizadeh NR, Franklin JM, Jeffries CM, et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr. 2017;50:1212–25. PMID: 28808438. doi:10.1107/S1600576717007786.
  • Panjkovich A, Svergun DI. Deciphering conformational transitions of proteins by small angle X-ray scattering and normal mode analysis. Phys Chem Chem Phys. 2016;18:5707–19. PMID: 26611321. doi:10.1039/c5cp04540a.
  • Schneidman-Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010;38:W540–4. PMID: 20507903. doi:10.1093/nar/gkq461.
  • Kikhney AG, Borges CR, Molodenskiy DS, Jeffries CM, Svergun DI. SASBDB: towards an automatically curated and validated repository for biological scattering data. Protein Sci. 2020;29(1):66–75. doi:10.1002/pro.3731. PMID: 31576635