9,424
Views
21
CrossRef citations to date
0
Altmetric
Review

The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy

ORCID Icon, &
Article: 2167189 | Received 21 Jul 2022, Accepted 06 Jan 2023, Published online: 01 Feb 2023

References

  • Jeong S, Park SH. Co-stimulatory receptors in cancers and their implications for cancer immunotherapy. Immune Netw. 2020;20(e3). doi:10.4110/in.2020.20.e3.
  • Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A. 1963-1967:86. doi:10.1073/pnas.86.6.1963.
  • Hurtado JC, Kim SH, Pollok KE, Lee ZH, Kwon BS. Potential role of 4-1BB in T cell activation. Comparison with the costimulatory molecule CD28. J Immunol. 1995;155(7):3360–22. doi:10.4049/jimmunol.155.7.3360.
  • Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS. Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol. 1993;150(3):771–81. doi:10.4049/jimmunol.150.3.771.
  • Vinay DS, Kwon BS. 4-1BB signaling beyond T cells. Cell Mol Immunol. 2011;8(281–284):281–84. doi:10.1038/cmi.2010.82.
  • Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellström KE, Mittler RS, Chen L. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3(682–685):682–85. doi:10.1038/nm0697-682.
  • Lee DY, Choi BK, Lee DG, Kim YH, Kim CH, Lee SJ, Kwon BS. 4-1BB signaling activates the t cell factor 1 effector/beta-catenin pathway with delayed kinetics via ERK signaling and delayed PI3K/AKT activation to promote the proliferation of CD8+ T Cells. PLoS One. 2013;8(e69677). doi:10.1371/journal.pone.0069677
  • Wen T, Bukczynski J, Watts TH. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol. 2002;168(4897–4906):4897–906. doi:10.4049/jimmunol.168.10.4897.
  • Curran MA, Geiger TL, Montalvo W, Kim M, Reiner SL, Al-Shamkhani A, Sun JC, Allison JP. Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J Exp Med. 2013;210(743–755):743–55. doi:10.1084/jem.20121190.
  • Song C, Sadashivaiah K, Furusawa A, Davila E, Tamada K, Banerjee A. Eomesodermin is required for antitumor immunity mediated by 4-1BB-agonist immunotherapy. Oncoimmunology. 2014;3(e27680):e27680. doi:10.4161/onci.27680.
  • Willoughby JE, Kerr JP, Rogel A, Taraban VY, Buchan SL, Johnson PWM, Al-Shamkhani A. Differential impact of CD27 and 4-1BB costimulation on effector and memory CD8 T cell generation following peptide immunization. J Immunol. 2014;193(244–251):244–51. doi:10.4049/jimmunol.1301217.
  • Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH. ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J Immunol. 2008;180(8093–8101):8093–101. doi:10.4049/jimmunol.180.12.8093.
  • Woroniecka KI, Rhodin KE, Dechant C, Cui X, Chongsathidkiet P, Wilkinson D, Waibl-Polania J, Sanchez-Perez L, Fecci PE. 4-1BB agonism averts TIL exhaustion and licenses PD-1 blockade in glioblastoma and other intracranial cancers. Clin Cancer Res. 2020;26(1349–1358):1349–58. doi:10.1158/1078-0432.CCR-19-1068.
  • Kim HD, Park S, Jeong S, Lee YJ, Lee H, Kim CG, Kim KH, Hong S-M, Lee J-Y, Kim S, et al. 4-1BB delineates distinct activation status of exhausted tumor-infiltrating CD8+T cells in hepatocellular carcinoma. Hepatology. 2020;71(955–971):955–71. doi:10.1002/hep.30881.
  • Choi BK, Lee DY, Lee DG, Kim YH, Kim S-H, Oh HS, Han C, Kwon BS. 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8(+) T cell proliferation. Cell Mol Immunol. 2017;14(748–757):748–57. doi:10.1038/cmi.2016.02.
  • Menk AV, Scharping NE, Rivadeneira DB, Calderon MJ, Watson MJ, Dunstane D, Watkins SC, Delgoffe GM. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med. 2018;215(1091–1100):1091–100. doi:10.1084/jem.20171068.
  • Ahmad A, Uddin S, Steinhoff M. CAR-T cell therapies: an overview of clinical studies supporting their approved use against acute lymphoblastic leukemia and large B-cell lymphomas. Int J Mol Sci. 2020;21(11):3906. doi:10.3390/ijms21113906.
  • Cilta-cel OK’d for Multiple Myeloma. Cancer Discov. 2022;12:1176. 10.1158/2159-8290.CD-NB2022-0019
  • Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat Rev Clin Oncol. 2021;18(715–727). doi:10.1038/s41571-021-00530-z.
  • Hashimoto K. CD137 as an attractive T cell co-stimulatory target in the TNFRSF for immuno-oncology drug development. Cancers (Basel). 2021;13(10):2288. doi:10.3390/cancers13102288.
  • Skokos D, Waite JC, Haber L, Crawford A, Hermann A, Ullman E, Slim R, Godin S, Ajithdoss D, Ye, X, et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci Transl Med. 2020;12(525). doi:10.1126/scitranslmed.aaw7888
  • Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, Schmidt H, Robert C, Chiarion-Sileni V, Ascierto PA, et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res. 2017;23(1929–1936):1929–36. doi:10.1158/1078-0432.CCR-16-1272.
  • Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131(49–57):49–57. doi:10.1182/blood-2017-06-741041.
  • Chin SM, Kimberlin CR, Roe-Zurz Z, Zhang P, Xu A, Liao-Chan S, Sen D, Nager AR, Oakdale NS, Brown C, et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun. 2018;9(4679). doi:10.1038/s41467-018-07136-7
  • Kamata-Sakurai M, Narita Y, Hori Y, Nemoto T, Uchikawa R, Honda M, Hironiwa N, Taniguchi K, Shida-Kawazoe M, Metsugi S, et al. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov. 2021;11(158–175):158–75. doi:10.1158/2159-8290.CD-20-0328.
  • Ho SK, Xu Z, Thakur A, Fox M, Tan SS, DiGiammarino E, Zhou L, Sho M, Cairns B, Zhao V, et al. Epitope and Fc-mediated cross-linking, but not high affinity, are critical for antitumor activity of CD137 agonist antibody with reduced liver toxicity. Mol Cancer Ther. 2020;19(1040–1051):1040–51. doi:10.1158/1535-7163.MCT-19-0608.
  • Jhajj HS, Lwo TS, Yao EL, Tessier PM. Unlocking the potential of agonist antibodies for treating cancer using antibody engineering. Trends Mol Med. 2022. doi:10.1016/j.molmed.2022.09.012.
  • Liu X, Zhao Y, Shi H, Zhang Y, Yin X, Liu M, Zhang H, He Y, Lu B, Jin T, et al. Human immunoglobulin G hinge regulates agonistic anti-CD40 immunostimulatory and antitumour activities through biophysical flexibility. Nat Commun. 2019;10(4206). doi:10.1038/s41467-019-12097-6
  • Orr CM, Fisher H, Yu X, Chan CHT, Gao Y, Duriez PJ, Booth SG, Elliott I, Inzhelevskaya T, Mockridge I, et al. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci Immunol. 2022;7(eabm3723). doi:10.1126/sciimmunol.abm3723
  • Li FB, Ravetch JV. Antitumor activities of agonistic anti-TNFR antibodies require differential Fc gamma RIIB coengagement in vivo. P Natl Acad Sci USA. 2013;110(19501–19506):19501–06. doi:10.1073/pnas.1319502110.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5(520). doi:10.3389/fimmu.2014.00520.
  • Claus C, Ferrara C, Wei X, Sam J, Lang S, Uhlenbrock F, Albrecht R, Herter S, Schlenker R, Hüsser T, et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 2019;11(496). doi:10.1126/scitranslmed.aav5989
  • Xu Y, Szalai AJ, Zhou T, Zinn KR, Chaudhuri TR, Li X, Koopman WJ, Kimberly RP. Fc gamma Rs modulate cytotoxicity of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J Immunol. 2003;171(562–568):562–68. doi:10.4049/jimmunol.171.2.562.
  • Li Y, Tan S, Zhang C, Chai Y, He M, Zhang CW, Wang Q, Tong Z, Liu K, Lei Y, et al. Limited cross-Linking of 4-1BB by 4-1BB ligand and the agonist monoclonal antibody utomilumab. Cell Rep. 2018;25(4):909–920 e904. doi:10.1016/j.celrep.2018.09.073.
  • Eskiocak U, Guzman W, Wolf B, Cummings C, Milling L, Wu HJ, Ophir M, Lambden C, Bakhru P, Gilmore DC, et al. Differentiated agonistic antibody targeting CD137 eradicates large tumors without hepatotoxicity. JCI Insight. 2020;5. doi:10.1172/jci.insight.133647.
  • Hinner MJ, Aiba RSB, Jaquin TJ, Berger S, Dürr MC, Schlosser C, Allersdorfer A, Wiedenmann A, Matschiner G, Schüler J, et al. Tumor-localized costimulatory T-cell engagement by the 4-1BB/HER2 bispecific antibody-anticalin fusion PRS-343. Clin Cancer Res. 2019;25(5878–5889):5878–89. doi:10.1158/1078-0432.CCR-18-3654.
  • Su TT, Gao X, Wang J, Tumor-Localized A. Approach to bypass anti-4-1BB immuno-toxicity. Clin Cancer Res. 2019;25(5732–5734):5732–34. doi:10.1158/1078-0432.CCR-19-1799.
  • Ku G, Bendell JC, Tolcher AW, Hurvitz SA, Krishnamurthy A, El-Khoueiry AB, Patnaik A, Shroff RT, Noonan A, Hahn NM, et al. A phase I dose escalation study of PRS-343, a HER2/4-1BB bispecific molecule, in patients with HER2-positive malignancies. Ann Oncol. 2020;31:S462–S463. doi:10.1016/j.annonc.2020.08.639.
  • Melero I, Sanmamed MF, Calvo E, Moreno I, Moreno V, Guerrero TCH, Martinez-Garcia M, Rodriguez-Vida A, Tabernero J, Pedrazzoli ABA, et al. First-in-human (FIH) phase I study of RO7122290 (RO), a novel FAP-targeted 4-1BB agonist, administered as single agent and in combination with atezolizumab (ATZ) to patients with advanced solid tumours. Ann Oncol. 2020;31:S707–S707. doi:10.1016/j.annonc.2020.08.1145.
  • Liu GZ, Du F, She XH, Zhu Y, Tolcher AW, Luo P. A safe and potent agonist ADG106 targeting a unique epitope of CD137 with novel mechanism of actions. Cancer Res. 2020;80. doi:10.1158/1538-7445.Am2020-4538.
  • Zhang L, Zhao HY, Ma YX, Zheng X, Jiang J, Zhang Y, Hong SD, Liu GZ, She XH, Ni QJ, et al. A phase I, dose-escalation study of ADG106, a fully human anti-CD137 agonistic antibody, in subjects with advanced solid tumors or relapsed/refractory non-Hodgkin lymphoma. J Clin Oncol. 2020;38(15_supplement): 3105.
  • Zhang L. Identification of a predictive biomarker and two pharmacodynamic biomarkers to ADG106 treatment, a novel anti-CD137 agonist antibody, in phase I clinical trials. J Clin Oncol. 2021:39. doi:10.1200/JCO.2021.39.15_suppl.e14505.
  • Elshiaty M, Schindler H, Christopoulos P. Principles and current clinical landscape of multispecific antibodies against cancer. Int J Mol Sci. 2021;22(11):5632. doi:10.3390/ijms22115632.
  • You G, Won J, Lee Y, Moon D, Park Y, Lee SH, Lee S-W. Bispecific antibodies: a smart arsenal for cancer immunotherapies. Vaccines (Basel). 2021;9(7). doi:10.3390/vaccines9070724.
  • Muik A, Garralda E, Altintas I, Gieseke F, Geva R, Ben-Ami E, Maurice-Dror C, Calvo E, LoRusso PM, Alonso G, et al. Preclinical characterization and Phase I trial results of a bispecific antibody targeting PD-L1 and 4-1BB (GEN1046) in patients with advanced refractory solid tumors. Cancer Discov. 2022;12(5):1248–65. doi:10.1158/2159-8290.CD-21-1345.
  • Geuijen C, Tacken P, Wang LC, Klooster R, van Loo PF, Zhou J, Mondal A, Liu JB, Kramer A, Condamine T, et al. A human CD137xPD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat Commun. 2021;12(4445). doi:10.1038/s41467-021-24767-5
  • Prenen H, Kyi C, Van Lancker G, Patel SP, Mittag D, Weaver A, Bol K, Stalbovskaya V, Pulini J, Zhou G, et al. Phase I dose escalation study of MCLA-145, a bispecific antibody targeting CD137 and PD-L1 in solid tumors. Ann Oncol. 2021;32:S1436–S1436. doi:10.1016/j.annonc.2021.10.155.
  • Link A, Juglair L, Poulet H, Lemaillet G, Reichen C, Schildknecht P, Tosevski I, Robinson J, Veitonmaki N, Herbst J, et al. Selection of first-in-human clinical dose range for the tumor-targeted 4-1BB agonist MP0310 (AMG 506) using a pharmacokinetic/pharmacodynamics modeling approach. Cancer Res. 2020;80(16_Supplement):2273–2273. doi:10.1002/1521-4141(2000012)30:12<3441::AID-IMMU3441>3.0.CO;2-L.
  • Tsun A, Zhai TH, Miao XN, Huang WF, Wang C, Xu YF, Yuan ZJ, Wang T, Dai S, Peng SG, et al. Discovery of a safer 4-1bb agonist by targeting a membrane-proximal epitope combined with bispecific-mediated cross-bridging. Journal for Immunotherapy of Cancer. 2021;9(Suppl 2):A939–A939. doi:10.1136/jitc-2021-SITC2021.895.
  • Poh A. Dual Targeting Approach for CD40 and 4-1BB. Cancer Discov. 2022;12(1):9–10. doi:10.1158/2159-8290.Cd-Nb2021-0403.
  • Galand C, Venkatraman V, Marques M, Strauss J, Carvajal R, Lim M, Morin B, Ignatovich O, Findeis M, Underwood D, et al. AGEN2373 IS A CD137 agonist antibody designed to leverage optimal CD137 AND FC gamma R co-targeting to promote antitumor immunologic effects. J ImmunotherCancer. 2020;8:A229–A230. doi:10.1136/jitc-2020-SITC2020.0377.
  • Tolcher AW, Carvajal RD, El-Khoueiry AB, Ortuzar Feliu W, Zang H, Ancukiewicz M, Shapiro I, Strauss JF. Initial findings of the first-in-human phase I study of AGEN2373, a conditionally active CD137 agonist antibody, in patients (pts) with advanced solid tumors. J Clin Oncol. 2021;39(15_suppl):2634–2634. doi:10.1200/JCO.2021.39.15_suppl.2634.
  • Qi X, Li F, Wu Y, Cheng C, Han P, Wang J, Yang X. Optimization of 4-1BB antibody for cancer immunotherapy by balancing agonistic strength with FcgammaR affinity. Nat Commun. 2019;10(2141). doi:10.1038/s41467-019-10088-1.
  • Fu SQ, Harb WA, Patel SP, Lu C, Halperin DM, Hsu YH, Shi N, Yamamura Y, Tang T, Jiang L, et al. Early safety and efficacy from a phase I open-label clinical trial of CD137(4-1BB) agonistic antibody LVGN6051 as monotherapy and in combination with pembrolizumab. J Clin Oncol. 2021;39(15_suppl):2521–2521. doi:10.1200/JCO.2021.39.15_suppl.2521.
  • Werchau D, Veitonmäki N, Hägerbrand K, Dahlman A, Smith KE, Fritzell S, von Schantz L, Thagesson M, Werchau D, Smedenfors K, et al. ATOR-1017, a 4-1BB antibody developed for tumor-directed immunotherapy of cancer. Journal for Immunotherapy of Cancer. 2019;7(1). doi:10.1186/s40425-019-0570-8.
  • Dahlen E, Rosén A, Barchan K, Dahlman A, Ellmark P, Furebring T, Smith KE. ATOR-1017: a 4-1BB antibody designed for superior safety/efficacy profile in cancer immunotherapy. Cancer Immunol Res. 2019;7(2_Supplement):A183–A183. doi:10.1158/2326-6074.Cricimteatiaacr18-A183.
  • Ullenhag GJ, Yachnin J, Carneiro A, Elison E, Carlsson M, Russell CA, Enell Smith K. A first-in-human, multicenter, open-label, phase 1 study of ATOR-1017, a 4-1BB antibody, in patients with advanced solid malignancies. J Clin Oncol. 2021;39(15_suppl):2646–2646. doi:10.1200/JCO.2021.39.15_suppl.2646.
  • Snell D, Gunde T, Warmuth S, Lichtlen P, Tietz J, Brock M, Simonin A, Hess C, Christopher W, Heiz R, et al. Preclinical development and mechanism of action studies of NM21-1480, a PD-L1/4-1BB/HSA trispecific MATCH3 therapeutic clinical candidate. Cancer Res. 2020;80(16_Supplement):2276–2276. doi:10.1158/1538-7445.Am2020-2276.
  • Warmuth S, Gunde T, Snell D, Brock M, Weinert C, Simonin A, Hess C, Tietz J, Johansson M, Spiga FM, et al. Engineering of a trispecific tumor-targeted immunotherapy incorporating 4-1BB co-stimulation and PD-L1 blockade. Oncoimmunology. 2021;10(1). Artn 2004661. doi:10.1080/2162402x.2021.2004661.
  • Cendrowicz E, Jacob L, Greenwald S, Tamir A, Pecker I, Tabakman R, Ghantous L, Tamir L, Kahn R, Avichzer J, et al. DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. J Exp Clin Cancer Res. 2022;41(16_Supplement). doi:10.1158/1538-7445.AM2020-3352
  • Gaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett KL, Wollerton F, Morrow M, Tuna M, Brewis N. CD137/OX40 bispecific antibody induces potent antitumor activity that is dependent on target coengagement. Cancer Immunol Res. 2020;8(781–793):781–93. doi:10.1158/2326-6066.CIR-19-0798.
  • Papadopoulos K, Yap TA, Piha-Paul SA, Lorusso P, Hu-Lieskovan S, Shepherd CJ, Marshall S, Holz J-B, Poon E, Grabowska UB, et al. A first-in-human phase I study of FS120, an OX40/CD137 tetravalent bispecific antibody, in patients with advanced malignancies. Ann Oncol. 2021;32:S864–S865. doi:10.1016/j.annonc.2021.08.1417.
  • Lakins MA, Koers A, Giambalvo R, Munoz-Olaya J, Hughes R, Goodman E, Marshall S, Wollerton F, Batey S, Gliddon D, et al. FS222, a CD137/PD-L1 tetravalent bispecific antibody, exhibits low toxicity and antitumor activity in colorectal cancer models. Clinical Cancer Research. 2020;26(4154–4167):4154–67. doi:10.1158/1078-0432.Ccr-19-2958.
  • Jeong S, Park E, Kim H-D, Sung E, Kim H, Jeon J, Kim Y, Jung U-J, Son Y-G, Hong Y, et al. Novel anti-4-1BBxPD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J Immunother Cancer. 2021;9(7):e002428. doi:10.1136/jitc-2021-002428.
  • Lee Y, Lee S, Kim Y, Chung H, Park K, Park E, Park KS, Jung J, Sung B, Won J, et al. A novel anti-CD137 antibody recognizing the membrane-proximal CD137 domain elicits potent anti-tumor T cell activity in a bispecific antibody format. Cancer Res. 2021;81(13_Supplement):1850. doi:10.1158/1538-7445.AM2021-1850 .
  • Qiao Y, Qiu Y, Ding J, Luo N, Wang H, Ling X, Sun J, Wu Z, Wang Y, Liu Y, et al. Cancer immune therapy with PD-1-dependent CD137 co-stimulation provides localized tumour killing without systemic toxicity. Nat Commun. 2021;12(6360). doi:10.1038/s41467-021-26645-6
  • Legg JW. Tumor dependent co-stimulation of CD137/4-1BB in PSMA positive tumors: preclinical characterization of CB307, a half-life extended PSMAxCD137 bispecific Humabody therapeutic. Cancer Res. 2020;80(16_Supplement):3352–3352. doi:10.1158/1538-7445.Am2020-3352.
  • Hashimoto K, Pierce AJ, Chau A, Bartlett P, Lloyd P, Maginn M, Machacek M, Vollmer J, Rajbally S, Tilson J, et al. A phase I open-label, dose escalation and expansion trial to investigate the safety, pharmacokinetics and pharmacodynamics of CB307, a trispecific Humabody T-cell enhancer, in patients with PSMA plus advanced and/or metastatic solid tumors (POTENTIA). Cancer Res. 2021;81(13_Supplement):CT206–CT206. doi:10.1158/1538-7445.AM2021-CT206.
  • Morales-Kastresana A, Pavlidou M, Peper J, Pattarini L, Barthels C, Hansbauer EM, Bel Aiba R, Bossenmaier B, Scholer-Dahirel A, Jaquin T, et al. Simultaneous costimulatory T-cell engagement and checkpoint inhibition by PRS-344/S095012, a PD-L1/4-1BB bispecific compound for tumor localized activation of the immune system. Cancer Res. 2021;81(13_Supplement):LB135–LB135. doi:10.1158/1538-7445.AM2021-LB135.
  • Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, Hansbauer E-M, Richter M, Lelievre H, Scholer-Dahirel A, et al. The PD-L1/4-1BB bispecific Antibody-Anticalin fusion protein PRS-344/S095012 elicits strong T-cell stimulation in a tumor-localized manner. Clin Cancer Res. 2022;28(15):3387–99. doi:10.1158/1078-0432.CCR-21-2762.
  • Hui YW, Li T, Ren Y, Hoenemann D, Mei J, Shan B, Hou B. Atg-101, a Novel Pd-L1/4-1bb bispecific antibody, augments anti-tumor immunity through immune checkpoint inhibition and Pdl1-Directed 4-1bb activation. Journal for Immunotherapy of Cancer. 2021;9(Suppl 2):A936–A937. doi:10.1136/jitc-2021-SITC2021.893.
  • Upadhyaya P, Hurov K, Kublin J, Ma J, Repash E, Kleyman M, Kristensson J, Kanakia D, You F, Chen L, et al. Bt7480, a Fully synthetic tumor-targeted immune cell agonist (Tica (Tm)) induces tumor localized Cd137 agonism and modulation of tumor immune microenvironment. Journal for Immunotherapy of Cancer. 2020;8:A424–A424. doi:10.1136/jitc-2020-SITC2020.0706.
  • Hurov K, Lahdenranta J, Upadhyaya P, Haines E, Cohen H, Repash E, Kanakia D, Ma J, Kristensson J, You F, et al. BT7480, a novel fully synthetic bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™) induces tumor localized CD137 agonism. J Immunother Cancer. 2021;9(11):e002883. doi:10.1136/jitc-2021-002883.
  • Upadhyaya P, Lahdenranta J, Hurov K, Battula S, Dods R, Haines E, Kleyman M, Kristensson J, Kublin J, Lani R, et al. Anticancer immunity induced by a synthetic tumor-targeted CD137 agonist. J Immunother Cancer. 2021;9(1):e001762. doi:10.1136/jitc-2020-001762.
  • Hurov K, Lahdenranta J, Upadhyaya P, Kanakia D, Repash E, You F, Ma J, Haines E, Cohen H, McDonnell K, et al. Abstract 1728: nectin-4-dependent immune cell stimulation and anti-tumor efficacy by BT7480, a Nectin-4/CD137 Bicycle ®tumor-targeted immune cell agonist (TICA™). Cancer Res. 2021;81(13_Supplement):1728–1728. doi:10.1158/1538-7445.AM2021-1728.
  • Zhai T, Wang C, Xu Y, Huang W, Yuan Z, Wang T, Dai S, Peng S, Pang T, Jiang W, et al. Generation of a safe and efficacious llama single-domain antibody fragment (vHH) targeting the membrane-proximal region of 4-1BB for engineering therapeutic bispecific antibodies for cancer. J Immunother Cancer. 2021;9(6):e002131. doi:10.1136/jitc-2020-002131.
  • Huang X, Sun J, Qin Y, Lin H, Guan J, Lai S, Kang X, Ling H. LBL-024, an anti-PD-L1 and 4-1BB bispecific antibody with highly differentiated binding affinity, shows anti-tumor efficacy in a mouse tumor model. Cancer Res. 2021;81(13_Supplement):1838–1838. doi:10.1158/1538-7445.AM2021-1838.
  • Song MY, Lee E-J, Chung H, Lee Y, Park YB, Jee MH, Kim K, Ju M, Lee JK, Choi BH, et al. A novel HER2/4-1BB bispecific antibody, YH32367 (ABL105) shows potent anti-tumor effect through tumor-directed T cell activation. Cancer Res. 2020;80(16_Supplement):6524–6524. doi:10.1158/1538-7445.Am2020-6524.
  • Gao Y, Yang T, Liu H, Song N, Dai C, Ding Y. Development and characterization of a novel human CD137 agonistic antibody with anti-tumor activity and a good safety profile in non-human primates. FEBS Open Bio. 2022;12(12):2166–78. doi:10.1002/2211-5463.13494.
  • DiLillo DJ, Ravetch JV. Fc-receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions. Cancer Immunol Res. 2015;3(704–713):704–13. doi:10.1158/2326-6066.CIR-15-0120.
  • Steiner D, Merz FW, Sonderegger I, Gulotti-Georgieva M, Villemagne D, Phillips DJ, Forrer P, Stumpp MT, Zitt C, Binz HK, et al. Half-life extension using serum albumin-binding DARPin(R) domains. Protein Eng Des Sel. 2017;30(583–591):583–91. doi:10.1093/protein/gzx022.
  • Hurov K, Upadhyaya P, Lahdenranta J, Kublin J, Ma J, Repash E, Kleyman M, Kristensson J, Chen L, Haines E, et al. BT7480, a novel fully synthetic tumor-targeted immune cell agonist (TICA (TM)) induces tumor localized 4-1BB agonism. Cancer Res. 2020;80(16_Supplement):5552–5552. doi:10.1158/1538-7445.Am2020-5552.
  • Stumpp MT, Amstutz P. DARPins: a true alternative to antibodies. Curr Opin Drug Discov Devel. 2007;10(2):153–159.
  • Rhodes CA, Pei D. Bicyclic peptides as next-generation therapeutics. Chemistry. 2017;23(12690–12703). doi:10.1002/chem.201702117.
  • Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: complexity Is a Matter of TRAFs. Front Immunol. 2018;9(2618). doi:10.3389/fimmu.2018.02618.
  • Wyzgol A, Muller N, Fick A, Munkel S, Grigoleit GU, Pfizenmaier K, Wajant H. Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J Immunol. 2009;183(1851–1861):1851–61. doi:10.4049/jimmunol.0802597.
  • Eun SY, Lee SW, Xu Y, Croft M. 4-1BB ligand signaling to T cells limits T cell activation. J Immunol. 2015;194(134–141):134–41. doi:10.4049/jimmunol.1401383.
  • Macdonald DC, Hotblack A, Akbar S, Britton G, Collins MK, Rosenberg WC. 4-1BB ligand activates bystander dendritic cells to enhance immunization in trans. J Immunol. 2014;193(5056–5064):5056–64. doi:10.4049/jimmunol.1301723.
  • Fellermeier S, Beha N, Meyer J-E, Ring S, Bader S, Kontermann RE, Müller D. Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format. Oncoimmunology. 2016;5(e1238540):e1238540. doi:10.1080/2162402X.2016.1238540.
  • Muik A, Adams HC, Gieseke F, Altintas I, Schoedel KB, Blum JM, Sänger B, Burm SM, Stanganello E, Verzijl D, et al. DuoBody-CD40x4-1BB induces dendritic-cell maturation and enhances T-cell activation through conditional CD40 and 4-1BB agonist activity. J Immunother Cancer. 2022;10(6):e004322. doi:10.1136/jitc-2021-004322.
  • Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol. 2012;314(57–68):57–68. doi:10.1016/j.jtbi.2012.08.034.
  • Otano I, Azpilikueta A, Glez-Vaz J, Alvarez M, Medina-Echeverz J, Cortés-Domínguez I, Ortiz-de-Solorzano C, Ellmark P, Fritzell S, Hernandez-Hoyos G, et al. CD137 (4-1BB) costimulation of CD8(+) T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nat Commun. 2021;12(7296). doi:10.1038/s41467-021-27613-w
  • Oh SA, Wu D-C, Cheung J, Navarro A, Xiong H, Cubas R, Totpal K, Chiu H, Wu Y, Comps-Agrar L, et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat Cancer. 2020;1(681–691):681–91. doi:10.1038/s43018-020-0075-x.
  • Blackburn SD, Shin H, Freeman GJ, Wherry EJ. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc Natl Acad Sci U S A. 2008;105(15016–15021):15016–21. doi:10.1073/pnas.0801497105.
  • Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, Bikoff EK, Robertson EJ, Lauer GM, Reiner SL, et al. Progenitor and terminal subsets of CD8+T cells cooperate to contain chronic viral infection. Science. 2012;338(1220–1225):1220–25. doi:10.1126/science.1229620.
  • Bartkowiak T, Jaiswal AR, Ager CR, Chin R, Chen C-H, Budhani P, Ai M, Reilley MJ, Sebastian MM, Hong DS, et al. Activation of 4-1BB on liver myeloid cells triggers hepatitis via an interleukin-27-dependent pathway. Clin Cancer Res. 2018;24(1138–1151):1138–51. doi:10.1158/1078-0432.CCR-17-1847.
  • Zhang J, Song K, Wang J, Li Y, Liu S, Dai C, Chen L, Wang S, Qin Z. S100A4 blockage alleviates agonistic anti-CD137 antibody-induced liver pathology without disruption of antitumor immunity. Oncoimmunology. 2018;7(e1296996):e1296996. doi:10.1080/2162402X.2017.1296996.
  • Kerntke C, Nimmerjahn F, Biburger M. There is (scientific) strength in numbers: a comprehensive quantitation of Fc gamma receptor numbers on human and murine peripheral blood leukocytes. Front Immunol. 2020;11(118). doi:10.3389/fimmu.2020.00118.
  • Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19(1035–1043):1035–43. doi:10.1158/1078-0432.CCR-12-2064.
  • Buchan SL, Dou L, Remer M, Booth SG, Dunn SN, Lai C, Semmrich M, Teige I, Mårtensson L, Penfold CA, et al. Antibodies to costimulatory receptor 4-1BB enhance anti-tumor immunity via T regulatory cell depletion and promotion of CD8 T cell effector function. Immunity. 2018;49(5):958–970 e957. doi:10.1016/j.immuni.2018.09.014.
  • Derebe MG, Nanjunda RK, Gilliland GL, Lacy ER, Chiu ML. Human IgG subclass cross-species reactivity to mouse and cynomolgus monkey Fcgamma receptors. Immunol Lett. 2018;197(1–8):1–8. doi:10.1016/j.imlet.2018.02.006.
  • Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, Zimring J, Rispens T, Vidarsson G. Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs. 2017;9(767–773):767–73. doi:10.1080/19420862.2017.1323159.
  • Bitra A, Doukov T, Destito G, Croft M, Zajonc DM. Crystal structure of the m4-1BB/4-1BBL complex reveals an unusual dimeric ligand that undergoes structural changes upon 4-1BB receptor binding. J Biol Chem. 2019;294(1831–1845):1831–45. doi:10.1074/jbc.RA118.006297.
  • Piha-Paul S, Bendell J, Tolcher A, Hurvitz S, Patnaik A, Shroff R, Pohlmann P, Zettl M, Hahn N, Krishnamurthy A, et al. A Phase 1 Dose Escalation Study of Prs-343, a Her2/4-1bb Bispecific Molecule, in patients with her2-positive malignancies. Journal for Immunotherapy of Cancer. 2020;8:A1–A2. doi:10.1136/Lba2019.2.
  • Shojaie L, Ali M, Iorga A, Dara L. Mechanisms of immune checkpoint inhibitor-mediated liver injury. Acta Pharm Sin B. 2021;11(3727–3739):3727–39. doi:10.1016/j.apsb.2021.10.003.
  • Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med. 2003;198(39–50):39–50. doi:10.1084/jem.20022235.
  • Albandar HJ, Fuqua J, Albandar JM, Safi S, Merrill SA, Ma PC. Immune-related adverse events (irAE) in cancer immune checkpoint inhibitors (ICI) and Survival outcomes correlation: to rechallenge or Not? Cancers (Basel). 2021;13(5):989. doi:10.3390/cancers13050989.
  • Zhou X, Yao Z, Yang H, Liang N, Zhang X, Zhang F. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 2020;18(87). doi:10.1186/s12916-020-01549-2.
  • Conroy M, Naidoo J. Immune-related adverse events and the balancing act of immunotherapy. Nat Commun. 2022;13(392). doi:10.1038/s41467-022-27960-2.
  • Etxeberria I, Glez-Vaz J, Teijeira A, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open. 2020;4(e000733). doi:10.1136/esmoopen-2020-000733.
  • Bartkowiak T, Curran MA. 4-1BB agonists: multi-potent potentiators of tumor immunity. Front Oncol. 2015;5(117). doi:10.3389/fonc.2015.00117.
  • Choi BK, Kim YH, Kwon PM, Lee SC, Kang SW, Kim MS, Lee MJ, Kwon BS. 4-1BB functions as a survival factor in dendritic cells. J Immunol. 2009;182(4107–4115):4107–15. doi:10.4049/jimmunol.0800459.
  • Stoll A, Bruns H, Fuchs M, Völkl S, Nimmerjahn F, Kunz M, Peipp M, Mackensen A, Mougiakakos D. CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia. 2021;35(3482–3496):3482–96. doi:10.1038/s41375-021-01287-1.
  • Jiang P, Gao W, Ma T, Wang R, Piao Y, Dong X, Wang P, Zhang X, Liu Y, Su W, et al. CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages. Theranostics. 2019;9(2950–2966):2950–66. doi:10.7150/thno.29617.
  • Wensman H, Kamgari N, Johansson A, Grujic M, Calounova G, Lundequist A, Rönnberg E, Pejler G. Tumor-mast cell interactions: induction of pro-tumorigenic genes and anti-tumorigenic 4-1BB in MCs in response to Lewis lung carcinoma. Mol Immunol. 2012;50(210–219):210–19. doi:10.1016/j.molimm.2012.01.009.
  • Nishimoto H, Lee S-W, Hong H, Potter KG, Maeda-Yamamoto M, Kinoshita T, Kawakami Y, Mittler RS, Kwon BS, Ware CF, et al. Costimulation of mast cells by 4-1BB, a member of the tumor necrosis factor receptor superfamily, with the high-affinity IgE receptor. Blood. 2005;106(4241–4248):4241–48. doi:10.1182/blood-2005-04-1358.
  • Heinisch IV, Daigle I, Knopfli B, Simon HU. CD137 activation abrogates granulocyte-macrophage colony-stimulating factor-mediated anti-apoptosis in neutrophils. Eur J Immunol. 2000;30(3441–3446):3441–46. doi:10.1002/1521-4141(2000012)30:12<3441::AID-IMMU3441>3.0.CO;2-L.
  • Heinisch IV, Bizer C, Volgger W, Simon HU. Functional CD137 receptors are expressed by eosinophils from patients with IgE-mediated allergic responses but not by eosinophils from patients with non-IgE-mediated eosinophilic disorders. J Allergy Clin Immunol. 2001;108(21–28):21–28. doi:10.1067/mai.2001.116864.
  • Tu TH, Kim C-S, Goto T, Kawada T, Kim B-S, Yu R. 4-1BB/4-1BBL interaction promotes obesity-induced adipose inflammation by triggering bidirectional inflammatory signaling in adipocytes/macrophages. Mediators Inflamm. 2012;2012(972629):1–10. doi:10.1155/2012/972629.
  • Yuan W, Xu C, Li B, Xia H, Pan Y, Zhong W, Xu L, Chen R, Wang B. Contributions of costimulatory molecule CD137 in endothelial cells. J Am Heart Assoc. 2021;10(e020721). doi:10.1161/JAHA.120.020721.
  • Palazon A, Teijeira A, Martínez-Forero I, Hervás-Stubbs S, Roncal C, Peñuelas I, Dubrot J, Morales-Kastresana A, Pérez-Gracia JL, Ochoa MC, et al. Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res. 2011;71(801–811):801–11. doi:10.1158/0008-5472.CAN-10-1733.
  • Foda BM, Ciecko AE, Serreze DV, Ridgway WM, Geurts AM, Chen Y-G. The CD137 ligand is important for Type 1 diabetes development but dispensable for the homeostasis of disease-suppressive CD137(+) FOXP3(+) regulatory CD4 T cells. J Immunol. 2020;204(2887–2899):2887–99. doi:10.4049/jimmunol.1900485.
  • Forsberg MH, Ciecko AE, Bednar KJ, Itoh A, Kachapati K, Ridgway WM, Chen Y-G. CD137 plays both pathogenic and protective roles in type 1 diabetes development in NOD mice. J Immunol. 2017;198(3857–3868):3857–68. doi:10.4049/jimmunol.1601851.
  • Le NH, Kim C-S, Tu TH, Choi H-S, Kim B-S, Kawada T, Goto T, Park T, Yoon Park JH, Yu R, et al. Blockade of 4-1BB and 4-1BBL interaction reduces obesity-induced skeletal muscle inflammation. Mediators Inflamm. 2013;2013(865159):1–10. doi:10.1155/2013/865159.
  • Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov. 2018;17(509–527):509–27. doi:10.1038/nrd.2018.75.
  • Betts A, van der Graaf PH. Mechanistic quantitative pharmacology strategies for the early clinical development of bispecific antibodies in oncology. Clin Pharmacol Ther. 2020;108(528–541):528–41. doi:10.1002/cpt.1961.
  • Laderach D, Movassagh M, Johnson A, Mittler RS, Galy A. 4-1BB co-stimulation enhances human CD8(+) T cell priming by augmenting the proliferation and survival of effector CD8(+) T cells. Int Immunol. 2002;14(1155–1167):1155–67. doi:10.1093/intimm/dxf080.
  • Martinez-Forero I, Azpilikueta A, Bolaños-Mateo E, Nistal-Villan E, Palazon A, Teijeira A, Perez-Chacon G, Morales-Kastresana A, Murillo O, Jure-Kunkel M, et al. T cell costimulation with anti-CD137 monoclonal antibodies is mediated by K63-polyubiquitin-dependent signals from endosomes. J Immunol. 2013;190(6694–6706):6694–706. doi:10.4049/jimmunol.1203010.
  • Glez-Vaz J, Azpilikueta A, Olivera I, Cirella A, Teijeira A, Ochoa MC, Alvarez M, Eguren-Santamaria I, Luri-Rey C, Rodriguez-Ruiz ME, et al. Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. J Immunother Cancer. 2022;10(3):e003532. doi:10.1136/jitc-2021-003532.
  • Seidel J, Leitzke S, Ahrens B, Sperrhacke M, Bhakdi S, Reiss K. Role of ADAM10 and ADAM17 in regulating CD137 Function. Int J Mol Sci. 2021;22(5):2730. doi:10.3390/ijms22052730.
  • Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, Coukos G, Powell DJ Jr. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res. 2014;20(44–55):44–55. doi:10.1158/1078-0432.CCR-13-0945.
  • Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124(2246–2259):2246–59. doi:10.1172/JCI73639.
  • Kim HD, Park S, Jeong S, Lee YJ, Lee H, Kim CG, Kim KH, Hong SM, Lee JY, Kim S, et al. 4-1BB delinates distinct activation status of exhausted tumor-infiltrating CD8(+) T cells in hepatocellular carcinoma. Hepatology. 2020;71(3): 955–971. doi:10.1002/hep.30881.
  • Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, Ren X, Wang L, Wu X, Zhang J, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. 2021;374(abe6474). doi:10.1126/science.abe6474
  • Datar I, Sanmamed MF, Wang J, Henick BS, Choi J, Badri T, Dong W, Mani N, Toki M, Meijas LD, et al. Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin Cancer Res. 2019;25(4663–4673):4663–73. doi:10.1158/1078-0432.CCR-18-4142.
  • Eiva MA, Omran DK, Chacon JA, Powell DJ Jr. Systematic analysis of CD39, CD103, CD137, and PD-1 as biomarkers for naturally occurring tumor antigen-specific TILs. Eur J Immunol. 2022;52(1):96–108. doi:10.1002/eji.202149329.
  • Leem G, Park J, Jeon M, Kim ES, Kim SW, Lee YJ, Choi SJ, Choi B, Park S, Ju YS, et al. 4-1BB co-stimulation further enhances anti-PD-1-mediated reinvigoration of exhausted CD39+CD8 T cells from primary and metastatic sites of epithelial ovarian cancers. J Immunother Cancer. 2020;8(2):e001650. doi:10.1136/jitc-2020-001650.
  • Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, Goodall CP, Blair TC, Fox BA, McDermott JE, et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun. 2018;9(2724). doi:10.1038/s41467-018-05072-0
  • Ugolini A, Nuti M. CD137(+) T-cells: protagonists of the immunotherapy revolution. Cancers (Basel). 2021;13(3):456. doi:10.3390/cancers13030456.
  • Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11(540–552):540–52. doi:10.1111/cts.12567.
  • Novakovic AM, Wilkins JJ, Dai H, Wade JR, Neuteboom B, Brar S, Bello CL, Girard P, Khandelwal A. Changing body weight-based dosing to a flat dose for avelumab in metastatic Merkel cell and advanced urothelial carcinoma. Clin Pharmacol Ther. 2020;107(588–596):588–96. doi:10.1002/cpt.1645.
  • Giffin MJ, Cooke K, Lobenhofer EK, Estrada J, Zhan J, Deegen P, Thomas M, Murawsky CM, Werner J, Liu S, et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin Cancer Res. 2021;27(1526–1537):1526–37. doi:10.1158/1078-0432.CCR-20-2845.
  • Houot R, Kohrt H, Levy R. Boosting antibody-dependent cellular cytotoxicity against tumor cells with a CD137 stimulatory antibody. Oncoimmunology. 2012;1(957–958):957–58. doi:10.4161/onci.19974.
  • Opzoomer JW, Sosnowska D, Anstee JE, Spicer JF, Arnold JN. Cytotoxic chemotherapy as an immune stimulus: a molecular perspective on turning up the immunological heat on cancer. Front Immunol. 2019;10(1654). doi:10.3389/fimmu.2019.01654.
  • Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(256–265):256–65. doi:10.1093/jnci/djs629.
  • Barsoumian HB, Ramapriyan R, Younes AI, Caetano MS, Menon H, Comeaux NI, Cushman TR, Schoenhals JE, Cadena AP, Reilly TP, et al. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J Immunother Cancer. 2020;8(2):e000537. doi:10.1136/jitc-2020-000537.
  • Benaduce AP, Brenneman R, Schrand B, Pollack A, Gilboa E, Ishkanian A. 4-1BB aptamer-based immunomodulation enhances the therapeutic index of radiation therapy in murine tumor models. Int J Radiat Oncol Biol Phys. 2016;96(458–461):458–61. doi:10.1016/j.ijrobp.2016.05.013.
  • Qu QX, Zhu X-Y, Du -W-W, Wang H-B, Shen Y, Zhu Y-B, Chen C. 4-1BB agonism combined with PD-L1 blockade increases the number of tissue-resident CD8+ T cells and facilitates tumor abrogation. Front Immunol. 2020;11(577). doi:10.3389/fimmu.2020.00577.
  • Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, et al. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther. 2022;13(140). doi:10.1186/s13287-022-02819-x
  • Simoni Y, Becht E, Fehlings M, Loh CY, Koo S-L, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(575–579):575–79. doi:10.1038/s41586-018-0130-2.