4,935
Views
6
CrossRef citations to date
0
Altmetric
Brief Report

Predictive modeling of concentration-dependent viscosity behavior of monoclonal antibody solutions using artificial neural networks

, &
Article: 2169440 | Received 21 Oct 2022, Accepted 12 Jan 2023, Published online: 27 Jan 2023

References

  • Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs. 2021;14 PMID: 35030985. doi:10.1080/19420862.2021.2014296.
  • Jiskoot W, Hawe A, Menzen T, Volkin DB, Crommelin DJA. Ongoing Challenges to Develop High Concentration Monoclonal Antibody-based Formulations for Subcutaneous Administration: Quo Vadis? J Pharm Sci. 2022;111:861–10. PMID: 34813800. doi:10.1016/j.xphs.2021.11.008.
  • Mathaes R, Koulov A, Joerg S, Mahler HC. Subcutaneous Injection Volume of Biopharmaceuticals—Pushing the Boundaries. J Pharm Sci. 2016;105:2255–59. PMID: 27378678. doi:10.1016/j.xphs.2016.05.029.
  • Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93:1390–402. PMID: 15124199. doi:10.1002/jps.20079;.
  • Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99:1152–68. PMID: 19705420. doi:10.1002/jps.21898.
  • Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab–Fab Interaction that impacts solution viscosity. J Pharm Sci. 2008;97:4219–27. PMID: 18240303. doi:10.1002/jps.21322.
  • Wang S, Zhang N, Hu T, Dai W, Feng X, Zhang X, Qian F. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies. Mol Pharm. 2015;12:4478–87. PMID: 26528726. doi:10.1021/acs.molpharmaceut.5b00643;.
  • Scherer TM, Liu J, Shire SJ, Minton AP. Intermolecular Interactions of IgG1 Monoclonal Antibodies at High Concentrations Characterized by Light Scattering. J Phys Chem B. 2010;114:12948–57. PMID: 20849134. doi:10.1021/jp1028646;.
  • Tilegenova C, Izadi S, Yin J, Huang CS, Wu J, Ellerman D, Hymowitz SG, Walters B, Salisbury C, Carter PJ. Dissecting the molecular basis of high viscosity of monospecific and bispecific IgG antibodies. MAbs. 2020;12:1692764. PMID: 31779513. doi:10.1080/19420862.2019.1692764.
  • Wang SS, Yan Y, Ho K. US FDA-approved therapeutic antibodies with high-concentration formulation: summaries and perspectives. Antib Ther. 2021;4:262–73. PMID: 34909579. doi:10.1093/abt/tbab027;.
  • Tsumura K, Hsu W, Mimura M, Horiuchi A, Shiraki K. Lowering the viscosity of a high-concentration antibody solution by protein–polyelectrolyte complex. J Biosci Bioeng. 2022;133:17–24. PMID: 34629298. doi:10.1016/j.jbiosc.2021.09.011;.
  • Zeng Y, Tran T, Wuthrich P, Naik S, Davagnino J, Greene DG, Mahoney RP, Soane DS. Caffeine as a Viscosity Reducer for Highly Concentrated Monoclonal Antibody Solutions. J Pharm Sci. 2021:110:3594–604. PMID: 34181992. doi:10.1016/j.xphs.2021.06.030;.
  • Guo Z, Chen A, Nassar RA, Helk B, Mueller C, Tang Y, Gupta K, Klibanov AM. Structure-Activity Relationship for Hydrophobic Salts as Viscosity-Lowering Excipients for Concentrated Solutions of Monoclonal Antibodies. Pharm Res. 2012;29:3102–09. PMID: 22692671. doi:10.1007/s11095-012-0802-9;.
  • Srivastava A, O’Dell C, Bolessa E, McLinden S, Fortin L, Deorkar N. Viscosity Reduction and Stability Enhancement of Monoclonal Antibody Formulations Using Derivatives of Amino Acids. J Pharm Sci. 2022;111:2848–56. PMID: 35605688. doi:10.1016/j.xphs.2022.05.011;.
  • Yang Y, Velayudhan A, Thornhill NF, Farid SS. Multi-criteria manufacturability indices for ranking high-concentration monoclonal antibody formulations. Biotechnol Bioeng. 2017;114:2043–56. PMID: 28464235. doi:10.1002/bit.26329;.
  • Heise T, Nosek L, Dellweg S, Zijlstra E, Praestmark KA, Kildegaard J, Nielsen G, Sparre T. Impact of injection speed and volume on perceived pain during subcutaneous injections into the abdomen and thigh: a single-centre, randomized controlled trial. Diabetes Obes Metab. 2014;16:971–76. PMID: 24720741. doi:10.1111/dom.12304;.
  • Tomar DS, Kumar S, Singh SK, Goswami S, Li L. Molecular basis of high viscosity in concentrated antibody solutions: strategies for high concentration drug product development. MAbs. 2016;8:216–28. PMID: 26736022. doi:10.1080/19420862.2015.1128606;.
  • Yadav S, Shire SJ, Kalonia DS. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci. 2010;99:4812–29. PMID: 20821382. doi:10.1002/jps.22190;.
  • Binabaji E, Ma J, Zydney AL. Intermolecular interactions and the viscosity of highly concentrated monoclonal antibody solutions. Pharm Res. 2015;32:3102–09. PMID: 25832501. doi:10.1007/s11095-015-1690-6;.
  • Neergaard MS, Kalonia DS, Parshad H, Nielsen AD, Møller EH, van de Weert M. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass – prediction of viscosity through protein–protein interaction measurements. Eur J Pharma Sci. 2013;49:400–10. PMID: 23624326. doi:10.1016/j.ejps.2013.04.019;.
  • Li L, Kumar S, Buck PM, Burns C, Lavoie J, Singh SK, Warne NW, Nichols P, Luksha N, Boardman D. Concentration Dependent Viscosity of Monoclonal Antibody Solutions: Explaining Experimental Behavior in Terms of Molecular Properties. Pharm Res. 2014;31:3161–78. PMID: 24906598. doi:10.1007/s11095-014-1409-0;.
  • Nichols P, Li L, Kumar S, Buck PM, Singh SK, Goswami S, Balthazor B, Conley TR, Sek D, Allen MJ. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. MAbs. 2015;7:212–30. PMID: 25559441. doi:10.4161/19420862.2014.985504;.
  • Skar-Gislinge N, Camerin F, Stradner A, Zaccarelli E, Schurtenberger P. Cluster formation and the link to viscosity in antibody solutions. ArXiv. 2022. doi:10.48550/arXiv.2209.05182;.
  • Shimomura T, Sekiguchi M, Honda R, Yamazaki M, Yokoyama M, Uchiyama S. Estimation of the Viscosity of an Antibody Solution from the Diffusion Interaction Parameter. Biol Pharm Bull. 2022;45:b22–00263. PMID: 36047198. doi:10.1248/bpb.b22-00263;.
  • Yadav S, Shire SJ, Kalonia DS. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012;101:998–1011. PMID: 22113861. doi:10.1002/jps.22831;.
  • Saito S, Hasegawa J, Kobayashi N, Kishi N, Uchiyama S, Fukui K. Behavior of Monoclonal Antibodies: Relation Between the Second Virial Coefficient (B 2) at Low Concentrations and Aggregation Propensity and Viscosity at High Concentrations. Pharm Res. 2012;29:397–410. PMID: 21853361. doi:10.1007/s11095-011-0563-x;.
  • Connolly BD, Petry C, Yadav S, Demeule B, Ciaccio N, Moore JMR, Shire SJ, Gokarn YR. Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J. 2012;103:69–78. PMID: 22828333. doi:10.1016/j.bpj.2012.04.047;.
  • Woldeyes MA, Qi W, Razinkov VI, Furst EM, Roberts CJ. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies? J Pharm Sci. 2019;108:142–54. PMID: 30017887. doi:10.1016/j.xphs.2018.07.007;.
  • Pathak J, Nugent S, Bender M, Roberts C, Curtis R, Douglas J. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal aAtibodies. Polymers (Basel). 2021;13:601. PMID: 33671342. doi:10.3390/polym13040601;.
  • Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I, et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Nat Acad Sci. 2014;111:18601–06. PMID: 25512516. doi:10.1073/pnas.1421779112;.
  • Agrawal NJ, Helk B, Kumar S, Mody N, Sathish HA, Samra HS, Buck PM, Li L, Trout BL. Computational tool for the early screening of monoclonal antibodies for their viscosities. MAbs. 2016;8:43–48. PMID: 26399600. doi:10.1080/19420862.2015.1099773;.
  • Tomar DS, Li L, Broulidakis MP, Luksha NG, Burns CT, Singh SK, Kumar S. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs. 2017;9:476–89. PMID: 28125318. doi:10.1080/19420862.2017.1285479;.
  • Apgar JR, Tam ASP, Sorm R, Moesta S, King AC, Yang H, Kelleher K, Murphy D, D’Antona AM, Yan G, et al. Modeling and mitigation of high-concentration antibody viscosity through structure-based computer-aided protein design. PLoS One. 2020;15:e0232713. PMID: 32379792. doi:10.1371/journal.pone.0232713;.
  • Lai P-K, Fernando A, Cloutier TK, Gokarn Y, Zhang J, Schwenger W, Chari R, Calero-Rubio C, Trout BL. Machine Learning Applied to Determine the Molecular Descriptors Responsible for the Viscosity Behavior of Concentrated Therapeutic Antibodies. Mol Pharm. 2021;18:1167–75. PMID: 33450157. doi:10.1021/acs.molpharmaceut.0c01073;.
  • Gentiluomo L, Roessner D, Augustijn D, Svilenov H, Kulakova A, Mahapatra S, Winter G, Streicher W, Åsmund R, Peters GHJ, et al. Application of interpretable artificial neural networks to early monoclonal antibodies development. Eur J Pharma Biopharm. 2019;141:81–89. PMID: 31112768. doi:10.1016/j.ejpb.2019.05.017;.
  • Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J, Deane CM. Five computational developability guidelines for therapeutic antibody profiling. ProcNat Acad Sci. 2019;116:4025–30. PMID: 30765520. doi:10.1073/pnas.1810576116;.
  • Thorsteinson N, Gunn JR, Kelly K, Long W, Labute P. Structure-based charge calculations for predicting isoelectric point, viscosity, clearance, and profiling antibody therapeutics. MAbs. 2021;13 PMID: 34632944. doi:10.1080/19420862.2021.1981805;.
  • Lai P-K, Gallegos A, Mody N, Sathish HA, Trout BL. Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics. MAbs. 2022;14 PMID: 35075980. doi:10.1080/19420862.2022.2026208;.
  • Lai P-K. DeepSCM: An efficient convolutional neural network surrogate model for the screening of therapeutic antibody viscosity. Comput Struct Biotechnol J. 2022;20:2143–52. PMID: 35832619. doi:10.1016/j.csbj.2022.04.035;.
  • Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, Spitzer AI, Ramkumar PN. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr Rev Musculoskelet Med. 2020;13:69–76. PMID: 31983042. doi:10.1007/s12178-020-09600-8;.
  • Han X, Shih J, Lin Y, Chai Q, Cramer SM. Development of QSAR models for in silico screening of antibody solubility. MAbs. 2022;14 PMID: 35442164. doi:10.1080/19420862.2022.2062807;.
  • Delmar JA, Buehler E, Chetty AK, Das A, Quesada GM, Wang J, Chen X. Machine learning prediction of methionine and tryptophan photooxidation susceptibility. Mol Ther Methods Clin Dev. 2021;21:466–77. PMID: 33898635. doi:10.1016/j.omtm.2021.03.023;.