4,613
Views
4
CrossRef citations to date
0
Altmetric
Report

SpyDisplay: A versatile phage display selection system using SpyTag/SpyCatcher technology

, , , , , ORCID Icon & ORCID Icon show all
Article: 2177978 | Received 22 Dec 2022, Accepted 02 Feb 2023, Published online: 20 Feb 2023

References

  • Jijakli K, Khraiwesh B, Fu W, Luo L, Alzahmi A, Koussa J, Chaiboonchoe A, Kirmizialtin S, Yen L, Salehi-Ashtiani K. The in vitro selection world. Methods. 2016;106:3–13. doi:10.1016/j.ymeth.2016.06.003.
  • Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol. 1994;12(1):433–55. doi:10.1146/annurev.iy.12.040194.002245.
  • Qi H, Lu H, Qiu HJ, Petrenko V, Liu A. Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol. 2012;417(3):129–43. doi:10.1016/j.jmb.2012.01.038.
  • Breitling F, Dubel S, Seehaus T, Klewinghaus I, Little M. A surface expression vector for antibody screening. Gene. 1991;104(2):147–53. doi:10.1016/0378-1119(91)90244-6.
  • Dubel S, Breitling F, Fuchs P, Braunagel M, Klewinghaus I, Little M. A family of vectors for surface display and production of antibodies. Gene. 1993;128(1):97–101. doi:10.1016/0378-1119(93)90159-Z.
  • Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A. 2012;109(12):E690–697. doi:10.1073/pnas.1115485109.
  • Li L, Fierer JO, Rapoport TA, Howarth M. Structural analysis and optimization of the covalent association between spycatcher and a peptide tag. J Mol Biol. 2014;426(2):309–17. doi:10.1016/j.jmb.2013.10.021.
  • Keeble AH, Banerjee A, Ferla MP, Reddington SC, Anuar I, Howarth M. Evolving accelerated amidation by spytag/spycatcher to analyze membrane dynamics. Angew Chem Int Ed Engl. 2017;56(52):16521–25. doi:10.1002/anie.201707623.
  • Keeble AH, Turkki P, Stokes S, Khairil Anuar INA, Rahikainen R, Hytonen VP, Howarth M. Approaching infinite affinity through engineering of peptide-protein interaction. Proc Natl Acad Sci U S A. 2019;116(52):26523–33. doi:10.1073/pnas.1909653116.
  • Keeble AH, Howarth M. Power to the protein: enhancing and combining activities using the spy toolbox. Chem Sci. 2020;11(28):7281–91. doi:10.1039/D0SC01878C.
  • Hentrich C, Kellmann SJ, Putyrski M, Cavada M, Hanuschka H, Knappik A, Ylera F. Periplasmic expression of spytagged antibody fragments enables rapid modular antibody assembly. Cell Chem Biol. 2021;28(6):813–824 e816. doi:10.1016/j.chembiol.2021.01.011.
  • Alam MK, Gonzalez C, Hill W, El-Sayed A, Fonge H, Barreto K, Geyer CR. Synthetic modular antibody construction by using the spytag/spycatcher protein-ligase system. Chembiochem. 2017;18(22):2217–21. doi:10.1002/cbic.201700411.
  • Ward RL, Clark MA, Lees J, Hawkins NJ. Retrieval of human antibodies from phage-display libraries using enzymatic cleavage. J Immunol Methods. 1996;189(1):73–82. doi:10.1016/0022-1759(95)00231-6.
  • Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose pbad promoter. J Bacteriol. 1995;177(14):4121–30. doi:10.1128/jb.177.14.4121-4130.1995.
  • Rondot S, Koch J, Breitling F, Dubel S. A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol. 2001;19(1):75–78. doi:10.1038/83567.
  • Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, et al. The human combinatorial antibody library hucal gold combines diversification of all six cdrs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol. 2008;376(4):1182–200. doi:10.1016/j.jmb.2007.12.018.
  • Loset GA, Kristinsson SG, Sandlie I. Reliable titration of filamentous bacteriophages independent of piii fusion moiety and genome size by using trypsin to restore wild-type piii phenotype. Biotechniques. 2008;44(4):551–552, 554. doi:10.2144/000112724.
  • Robinson MP, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ, et al. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun. 2015;6(1):8072. doi:10.1038/ncomms9072.
  • Miersch S, Li Z, Hanna R, McLaughlin ME, Hornsby M, Matsuguchi T, Paduch M, Saaf A, Wells J, Koide S, et al. Scalable high throughput selection from phage-displayed synthetic antibody libraries. J Vis Exp. 2015;95:51492.
  • Zhang WB, Sun F, Tirrell DA, Arnold FH. Controlling macromolecular topology with genetically encoded spytag-spycatcher chemistry. J Am Chem Soc. 2013;135(37):13988–97. doi:10.1021/ja4076452.
  • Honegger A, Spinelli S, Cambillau C, Pluckthun A. A mutation designed to alter crystal packing permits structural analysis of a tight-binding fluorescein-scfv complex. Protein Sci. 2005;14(10):2537–49. doi:10.1110/ps.051520605.
  • Palmer T, Berks BC. The twin-arginine translocation (tat) protein export pathway. Nat Rev Microbiol. 2012;10(7):483–96. doi:10.1038/nrmicro2814.
  • Speck J, Arndt KM, Muller KM. Efficient phage display of intracellularly folded proteins mediated by the tat pathway. Protein Eng Des Sel. 2011;24(6):473–84. doi:10.1093/protein/gzr001.
  • Fisher AC, Kim JY, Perez-Rodriguez R, Tullman-Ercek D, Fish WR, Henderson LA, DeLisa MP. Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in escherichia coli. Microb Biotechnol. 2008;1(5):403–15. doi:10.1111/j.1751-7915.2008.00041.x.
  • Thomas JD, Daniel RA, Errington J, Robinson C. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (tat) pathway in escherichia coli. Mol Microbiol. 2001;39(1):47–53. doi:10.1046/j.1365-2958.2001.02253.x.
  • Ylera F, Harth S, Waldherr D, Frisch C, Knappik A. Off-rate screening for selection of high-affinity anti-drug antibodies. Anal Biochem. 2013;441(2):208–13. doi:10.1016/j.ab.2013.07.025.
  • Knappik A, Brundiers R. Recombinant antibody expression and purification. In: Walker JM, editor. The protein protocols handbook. Totowa (NJ): Humana Press; 2009. p. 1929–43.
  • Chasteen L, Ayriss J, Pavlik P, Bradbury AR. Eliminating helper phage from phage display. Nucleic Acids Res. 2006;34(21):e145. doi:10.1093/nar/gkl772.
  • Hanahan D. Studies on transformation of escherichia coli with plasmids. J Mol Biol. 1983;166(4):557–80. doi:10.1016/S0022-2836(83)80284-8.
  • Mazor Y, Van Blarcom T, Carroll S, Georgiou G. Selection of full-length iggs by tandem display on filamentous phage particles and escherichia coli fluorescence-activated cell sorting screening. FEBS J. 2010;277(10):2291–303. doi:10.1111/j.1742-4658.2010.07645.x.
  • Paschke M, Hohne W. A twin-arginine translocation (tat)-mediated phage display system. Gene. 2005;350(1):79–88. doi:10.1016/j.gene.2005.02.005.
  • Strauch E-M, Georgiou G. Mechanistic challenges and engineering applications of protein export in e. Coli. In: Lee SY, editor. Systems biology and biotechnology of escherichia coli. Netherlands: Springer Dordrecht; 2009. p. 327–49.
  • Kajiwara K, Aoki W, Koike N, Ueda M. Development of a yeast cell surface display method using the spytag/spycatcher system. Sci Rep. 2021;11(1):11059. doi:10.1038/s41598-021-90593-w.
  • Gallus S, Peschke T, Paulsen M, Burgahn T, Niemeyer CM, Rabe KS. Surface display of complex enzymes by in situ spycatcher-spytag interaction. Chembiochem. 2020;21(15):2126–31. doi:10.1002/cbic.202000102.
  • Gallus S, Mittmann E, Rabe KS. A modular system for the rapid comparison of different membrane anchors for surface display on escherichia coli. Chembiochem. 2022;23(2):e202100472. doi:10.1002/cbic.202100472.
  • Patel CA, Wang J, Wang X, Dong F, Zhong P, Luo PP, Wang KC. Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display. Protein Eng Des Sel. 2011;24(9):711–19. doi:10.1093/protein/gzr034.
  • Tesar D, Hotzel I. A dual host vector for fab phage display and expression of native igg in mammalian cells. Protein Eng Des Sel. 2013;26(10):655–62. doi:10.1093/protein/gzt050.
  • Veggiani G, Nakamura T, Brenner MD, Gayet RV, Yan J, Robinson CV, Howarth M. Programmable polyproteams built using twin peptide superglues. Proc Natl Acad Sci U S A. 2016;113(5):1202–07. doi:10.1073/pnas.1519214113.
  • Keeble AH, Yadav VK, Ferla MP, Bauer CC, Chuntharpursat-Bon E, Huang J, Bon RS, Howarth M. Dogcatcher allows loop-friendly protein-protein ligation. Cell Chem Biol. 2022;29(2):339–350 e310. doi:10.1016/j.chembiol.2021.07.005.
  • Fan R, Hakanpää J, Elfving K, Taberman H, Linder MB, Aranko AS. Biomolecular Click Reactions Using a Minimal pH-Activated Catcher/Tag Pair for Producing Native-Sized Spider-Silk Proteins. Angew Chem Int Ed Engl. 2023;e202216371. doi:10.1002/anie.202216371.
  • Vila-Perello M, Muir TW. Biological applications of protein splicing. Cell. 2010;143(2):191–200. doi:10.1016/j.cell.2010.09.031.
  • Schmohl L, Schwarzer D. Sortase-mediated ligations for the site-specific modification of proteins. Curr Opin Chem Biol. 2014;22:122–28. doi:10.1016/j.cbpa.2014.09.020.
  • Nguyen GK, Wang S, Qiu Y, Hemu X, Lian Y, Tam JP. Butelase 1 is an asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol. 2014;10(9):732–38. doi:10.1038/nchembio.1586.
  • Toplak A, Nuijens T, Quaedflieg PJLM, Wu B, Janssen DB. Peptiligase, an enzyme for efficient chemoenzymatic peptide synthesis and cyclization in water. Advanced Synthesis & Catalysis. 2016;358(13):2140–47. doi:10.1002/adsc.201600017.
  • Plessers S, Van Deuren V, Lavigne R, Robben J. High-throughput sequencing of phage display libraries reveals parasitic enrichment of indel mutants caused by amplification bias. Int J Mol Sci. 2021;22(11):11. doi:10.3390/ijms22115513.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in escherichia coli k-12 using pcr products. Proc Natl Acad Sci U S A. 2000;97(12):6640–45. doi:10.1073/pnas.120163297.
  • Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15a cryptic miniplasmid. J Bacteriol. 1978;134(3):1141–56. doi:10.1128/jb.134.3.1141-1156.1978.
  • Jarutat T, Frisch C, Nickels C, Merz H, Knappik A. Isolation and comparative characterization of ki-67 equivalent antibodies from the hucal phage display library. Biol Chem. 2006;387(7):995–1003. doi:10.1515/BC.2006.123.
  • Tropea JE, Cherry S, Waugh DS. Expression and purification of soluble his(6)-tagged tev protease. Methods Mol Biol. 2009;498:297–307.