6,953
Views
10
CrossRef citations to date
0
Altmetric
Review

Strategies for clinical dose optimization of T cell-engaging therapies in oncology

ORCID Icon, , &
Article: 2181016 | Received 07 Nov 2022, Accepted 13 Feb 2023, Published online: 23 Feb 2023

References

  • Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–18. doi:10.1158/1078-0432.CCR-14-1860.
  • Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022;22(2):85–96. doi:10.1038/s41577-021-00547-6.
  • Salvaris R, Ong J, Gregory GP. Bispecific antibodies: a review of development, clinical efficacy and toxicity in B-cell lymphomas. J Pers Med. 2021;11(5). doi:10.3390/jpm11050355.
  • Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):1–18. doi:10.1186/s13045-021-01084-4.
  • Fucà G, Spagnoletti A, Ambrosini M, de Braud F, Di Nicola M. Immune cell engagers in solid tumors: promises and challenges of the next generation immunotherapy. ESMO Open. 2021;6(1):100046. doi:10.1016/j.esmoop.2020.100046.
  • Wu Y, Yi M, Zhu S, Wang H, Wu K. Recent advances and challenges of bispecific antibodies in solid tumors. Exp Hematol Oncol. 2021;10(1):1–14. doi:10.1186/s40164-021-00250-1.
  • Singh A, Dees S, Grewal IS. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br J Cancer. 2021;124(6):1037–48. doi:10.1038/s41416-020-01225-5.
  • Arvedson T, Bailis JM, Britten CD, Klinger M, Nagorsen D, Coxon A, Egen JG, Martin F. Targeting solid tumors with bispecific T cell engager immune therapy. Annu Rev Cancer Biol. 2022;6:17–34. doi:10.1146/annurev-cancerbio-070620-104325.
  • Long M, Mims AS, Li Z. Factors affecting the cancer immunotherapeutic efficacy of T cell bispecific antibodies and strategies for improvement. Immunol Invest. 2022:1–39. doi:10.1080/08820139.2022.2131569.
  • Stieglmaier J, Benjamin J, Nagorsen D. Utilizing the BiTE (bispecific T-cell engager) platform for immunotherapy of cancer. Expert Opin Biol Ther. 2015;15(8):1093–99. doi:10.1517/14712598.2015.1041373.
  • You G, Won J, Lee Y, Moon D, Park Y, Lee SH, Lee S-W. Bispecific antibodies: a smart arsenal for cancer immunotherapies. Vaccines. 2021;9(7):724. doi:10.3390/vaccines9070724.
  • Arvedson T, Bailis JM, Urbig T, Stevens JL. Considerations for design, manufacture, and delivery for effective and safe T-cell engager therapies. Curr Opin Biotechnol. 2022;78:102799. doi:10.1016/j.copbio.2022.102799.
  • Chen W, Yang F, Wang C, Narula J, Pascua E, Ni I, Ding S, Deng X, Chu MLH, Pham A, et al. One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics. mAbs. 2021;13(1). doi:10.1080/19420862.2020.1871171
  • Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103–19. doi:10.1016/j.pharmthera.2019.04.006.
  • Einsele H, Borghaei H, Orlowski RZ, Subklewe M, Roboz GJ, Zugmaier G, Kufer P, Iskander K, Kantarjian HM. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer. 2020;126(14):3192–201. doi:10.1002/cncr.32909.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014:5. doi:10.3389/fimmu.2014.00520.
  • Betts A, Keunecke A, van Steeg TJ, van der Graaf PH, Avery LB, Jones H, Berkhout J. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: a comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. mAbs. 2018;10(5):751–64. doi:10.1080/19420862.2018.1462429.
  • Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34(5):687–709. doi:10.1007/s10928-007-9065-1.
  • Boswell CA, Tesar DB, Mukhyala K, Theil F-P, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63. doi:10.1021/bc100261d.
  • Hu S, Datta-Mannan A, D’Argenio DZ. Physiologically based modeling to predict monoclonal antibody pharmacokinetics in humans from in vitro physiochemical properties. MAbs. 2022;14(1):2056944. doi:10.1080/19420862.2022.2056944.
  • Faroudi M, Utzny C, Salio M, Cerundolo V, Guiraud M, Müller S, Valitutti S. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci. 2003;100(24):14145–50. doi:10.1073/pnas.2334336100.
  • Li J, Piskol R, Ybarra R, Chen YJJ, Li J, Slaga D, Hristopoulos M, Clark R, Modrusan Z, Totpal K, et al. CD3 bispecific antibody–induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med. 2019;11(508):1–13. doi:10.1126/scitranslmed.aax8861.
  • Germain RN, Stefanová I. THE DYNAMICS OF T CELL RECEPTOR SIGNALING: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol. 1999;17(1):467–522. doi:10.1146/annurev.immunol.17.1.467.
  • Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P, Clarke SC, Dang K, Harris KE, Iyer S, et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. mAbs. 2019;11(4):639–52. doi:10.1080/19420862.2019.1574521.
  • Vafa O, Trinklein ND. Perspective: designing T-cell engagers with better therapeutic windows. Front Oncol. 2020;10(April):1–7. doi:10.3389/fonc.2020.00446.
  • Mandikian D, Takahashi N, Lo AA, Li J, Eastham-Anderson J, Slaga D, Ho J, Hristopoulos M, Clark R, Totpal K, et al. Relative target affinities of T-cell–dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol Cancer Ther. 2018;17(4):776–85. doi:10.1158/1535-7163.MCT-17-0657.
  • Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavaré R, Ullman E, Mao S, Canova L, Sineshchekova O, et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep. 2021;11(1):1–17. doi:10.1038/s41598-021-93842-0.
  • Smith E, Olson K, Delfino F, DiLillo D, Kirshner J, Sineshchekova O, Zhang Q; Regeneron Pharmaceuticals, Inc. Bispecific anti-BCMA x anti-CD3 antibodies and uses thereof. United States patent US 20200024356A1. 2020 January 23.
  • Ellerman D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods. 2019;154(October 2018):102–17. doi:10.1016/j.ymeth.2018.10.026.
  • Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32. doi:10.1023/a:1014414520282.
  • Grimm HP. Gaining insights into the consequences of target-mediated drug disposition of monoclonal antibodies using quasi-steady-state approximations. J Pharmacokinet Pharmacodyn. 2009;36(5):407–20. doi:10.1007/s10928-009-9129-5.
  • Gibiansky L, Gibiansky E. Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn. 2010;37(4):323–46. doi:10.1007/s10928-010-9163-3.
  • Lee J-H, Kim H, Yao Z, Szajek LP, Grasso L, Kim I, Paik CH. Tumor-shed antigen affects antibody tumor targeting: comparison of two 89 Zr-labeled antibodies directed against shed or nonshed antigens. Contrast Media Mol Imaging. 2018;2018:1–12. doi:10.1155/2018/2461257.
  • Bacac M, Klein C, Umana P. CEA TCB: a novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. Oncoimmunology. 2016;5(8):1–3. doi:10.1080/2162402X.2016.1203498.
  • Petitcollin A, Bensalem A, Verdier M-C, Tron C, Lemaitre F, Paintaud G, Bellissant E, Ternant D. Modelling of the time-varying pharmacokinetics of therapeutic monoclonal antibodies: a literature review. Clin Pharmacokinet. 2020;59(1):37–49. doi:10.1007/s40262-019-00816-7.
  • Betts A, van der Graaf PH. Mechanistic quantitative pharmacology strategies for the early clinical development of bispecific antibodies in oncology. Clin Pharmacol Ther. 2020;108(3):528–41. doi:10.1002/cpt.1961.
  • Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation–updated consensus and review 2020. Front Immunol. 2020:11. doi:10.3389/fimmu.2020.01301.
  • Zhou Y, Penny HL, Kroenke MA, Bautista B, Hainline K, Chea LS, Parnes J, Mytych DT. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology. J Immunother Cancer. 2022;10(4):e004225. doi:10.1136/jitc-2021-004225.
  • Cohen S, Chung S, Spiess C, Lundin V, Stefanich E, Laing ST, Clark V, Brumm J, Zhou Y, Huang C, et al. An integrated approach for characterizing immunogenic responses toward a bispecific antibody. MAbs. 2021;13(1). doi:10.1080/19420862.2021.1944017
  • Campagne O, Delmas A, Fouliard S, Chenel M, Chichili GR, Li H, Alderson R, Scherrmann J-M, Mager DE. Integrated pharmacokinetic/pharmacodynamic model of a bispecific CD3xCD123 DART molecule in nonhuman primates: evaluation of activity and impact of immunogenicity. Clin Cancer Res. 2018;24(11):2631–41. doi:10.1158/1078-0432.CCR-17-2265.
  • Leclercq G, Servera LA, Danilin S, Challier J, Steinhoff N, Bossen C, Odermatt A, Nicolini V, Umaña P, Klein C, et al. Dissecting the mechanism of cytokine release induced by T-cell engagers highlights the contribution of neutrophils. Oncoimmunology. 2022;11(1):2039432. doi:10.1080/2162402X.2022.2039432.
  • Saber H, Del Valle P, Ricks TK, Leighton JK. An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection. Regul Toxicol Pharmacol. 2017;90:144–52. doi:10.1016/j.yrtph.2017.09.001.
  • Budde LE, Assouline S, Sehn LH, Schuster SJ, Yoon SS, Yoon DH, Matasar MJ, Bosch F, Kim WS, Nastoupil LJ, et al. Single-agent mosunetuzumab shows durable complete responses in patients with relapsed or refractory B-cell lymphomas: phase I dose-escalation study. J Clin Oncol. 2022;40(5):481–91. doi:10.1200/JCO.21.00931.
  • Holstein SA, Venkatakrishnan K, van der Graaf PH. Quantitative clinical pharmacology of CAR T‐cell therapy. Clin Pharmacol Ther. 2022;112(1):11–15. doi:10.1002/cpt.2631.
  • Yoneyama T, Kim M-S, Piatkov K, Wang H, Zhu AZX, Rubinstein R. Leveraging a physiologically-based quantitative translational modeling platform for designing B cell maturation antigen-targeting bispecific T cell engagers for treatment of multiple myeloma. PLoS Comput Biol. 2022;18(7):e1009715. doi:10.1371/journal.pcbi.1009715.
  • Li -C-C, Bender B, Yin S, Li Z, Zhang C, Hernandez G, Kwan A, Sun L, Adamkewicz JI, Wang H, et al. Exposure-response analyses indicate a promising benefit/risk profile of mosunetuzumab in relapsed and refractory non-hodgkin lymphoma. Blood. 2019;134(Supplement_1):1285–1285. doi:10.1182/blood-2019-123961.
  • Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, Kufer P, Riethmuller G, Bargou R, Baeuerle PA. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100(6):690–97. doi:10.1002/ijc.10557.
  • Jiang X, Chen X, Carpenter TJ, Wang J, Zhou R, Davis HM, Heald DL, Wang W. Development of a Target cell-Biologics-Effector cell (TBE) complex-based cell killing model to characterize target cell depletion by T cell redirecting bispecific agents. MAbs. 2018;10(6):876–89. doi:10.1080/19420862.2018.1480299.
  • Laszlo GS, Gudgeon CJ, Harrington KH, Dell’Aringa J, Newhall KJ, Means GD, Sinclair AM, Kischel R, Frankel SR, Walter RB. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123(4):554–61. doi:10.1182/blood-2013-09-527044.
  • Hipp S, Tai Y-T, Blanset D, Deegen P, Wahl J, Thomas O, Rattel B, Adam PJ, Anderson KC, Friedrich M. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia. 2017;31(8):1743–51. doi:10.1038/leu.2016.388.
  • Chen X, Haddish-Berhane N, Moore P, Clark T, Yang Y, Li H, Xuan D, Barton HA, Betts AM, Barletta F. Mechanistic projection of first-in-human dose for bispecific immunomodulatory P-cadherin LP-DART: an integrated PK/PD modeling approach. Clin Pharmacol Ther. 2016;100(3):232–41. doi:10.1002/cpt.393.
  • Van De Vyver A, Eigenmann M, Ovacik M, Pohl C, Herter S, Weinzierl T, Fauti T, Klein C, Lehr T, Bacac M, et al. A novel approach for quantifying the pharmacological activity of T-cell engagers utilizing in vitro time course experiments and streamlined data analysis. AAPS J. 2022;24(1):1–13. doi:10.1208/s12248-021-00637-2.
  • Dudal S, Hinton H, Giusti AM, Bacac M, Muller M, Fauti T, Colombetti S, Heckel T, Giroud N, Klein C, et al. Application of a MABEL approach for a T-cell-bispecific monoclonal antibody: CEA TCB. J Immunother. 2016;39(7):279–89. doi:10.1097/CJI.0000000000000132.
  • Frances N, Bacac M, Bray-French K, Christen F, Hinton H, Husar E, Quackenbush E, Schäfer M, Schick E, Van De Vyver A, et al. Novel in vivo and in vitro pharmacokinetic/pharmacodynamic-based human starting dose selection for glofitamab. J Pharm Sci. 2022;111(4):1208–18. doi:10.1016/j.xphs.2021.12.019.
  • Desnoyer A, Broutin S, Delahousse J, Maritaz C, Blondel L, Mir O, Chaput N, Paci A. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 2, immune checkpoint inhibitor antibodies. Eur J Cancer. 2020;128:119–28. doi:10.1016/j.ejca.2020.01.003.
  • Djebli N, Morcos PN, Jaminion F, Guerini E, Kratochwil NA, Justies N, Schick E, Kwan A, Humphrey K, Lundberg L, et al. Population pharmacokinetics and exposure-response analyses for glofitamab in relapsed/refractory B-cell non-hodgkin lymphoma (R/R NHL): confirmation of efficacy and CRS mitigation in patients with step-up dosing. Blood. 2020;136(Supplement 1):1–2. doi:10.1182/blood-2020-136311.
  • Girgis S, Lin SXW, Pillarisetti K, Banerjee A, Stephenson T, Ma X, Shetty S, Yang T-Y, Hilder BW, Jiao Q, et al. Translational modeling predicts efficacious therapeutic dosing range of teclistamab for multiple myeloma. Target Oncol. 2022;(123456789). doi:10.1007/s11523-022-00893-y.
  • Krishnan AY, Garfall AL, Mateos M-V, van de Donk NWCJ, Nahi H, San-Miguel F, Oriol J, Rosiñol A, Chari L, Bhutani A, et al. Updated phase 1 results of teclistamab, a B-cell maturation antigen (BCMA) × CD3 bispecific antibody, in relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2021;39(15_suppl):8007–8007. doi:10.1200/JCO.2021.39.15_suppl.8007.
  • Berdeja JG, Krishnan AY, Oriol A, van de Donk NWCJ, Rodríguez-Otero P, Askari E, Mateos M-V, Minnema MC, Costa LJ, Verona R, et al. Updated results of a phase 1, first-in-human study of talquetamab, a G protein-coupled receptor family C group 5 member D (GPRC5D) × CD3 bispecific antibody, in relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2021;39(15_suppl):8008–8008. doi:10.1200/JCO.2021.39.15_suppl.8008.
  • Bannerji R, Allan JN, Arnason JE, Brown JR, Advani RH, Barnes JA, Ansell SM, O’Brien SM, Chavez J, Duell J, et al. Clinical activity of REGN1979, a bispecific human, anti-CD20 x anti-CD3 antibody, in patients with Relapsed/Refractory (R/R) B-cell non-hodgkin lymphoma (B-NHL). Blood. 2019;134(Supplement_1):762–762. doi:10.1182/blood-2019-122451.
  • Zhu M, Olson K, Kirshner JR, Khaksar Toroghi M, Yan H, Haber L, Meagher C, Flink DM, Ambati SR, Davis JD, et al. Translational findings for odronextamab: from preclinical research to a first-in-human study in patients with CD20+ B-cell malignancies. Clin Transl Sci. 2022;15(4):954–66. doi:10.1111/cts.13212.
  • van de Vyver AJ, Weinzierl T, Eigenmann MJ, Frances N, Herter S, Buser RB, Somandin J, Diggelmann S, Limani F, Lehr T, et al. Predicting tumor killing and t-cell activation by t-cell bispecific antibodies as a function of target expression: combining in vitro experiments with systems modeling. Mol Cancer Ther. 2021;20(2):357–66. doi:10.1158/1535-7163.MCT-20-0269.
  • Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008;29(2):57–61. doi:10.1016/j.tips.2007.11.004.
  • Betts A, Haddish-Berhane N, Shah DK, van der Graaf PH, Barletta F, King L, Clark T, Kamperschroer C, Root A, Hooper A, et al. A translational quantitative systems pharmacology model for CD3 bispecific molecules: application to quantify T cell-mediated tumor cell killing by P-cadherin LP DART®. AAPS J. 2019;21(4). doi:10.1208/s12248-019-0332-z
  • Lin L, Wille L, Betts A, Hua F, Hagen D, Park J, Apgar J, Burke J. Abstract A70: bridging nonclinical studies to clinical design using quantitative systems pharmacology model of T cell-engaging bispecifics. Cancer Immunol Res. 2020;8(3_Supplement):A70–A70. doi:10.1158/2326-6074.TUMIMM19-A70.
  • Kamperschroer C, Shenton J, Lebrec H, Leighton JK, Moore PA, Thomas O. Summary of a workshop on preclinical and translational safety assessment of CD3 bispecifics. J Immunotoxicol. 2020;17(1):67–85. doi:10.1080/1547691X.2020.1729902.
  • Jiang X, Chen X, Jaiprasart P, Carpenter TJ, Zhou R, Wang W. Development of a minimal physiologically-based pharmacokinetic/pharmacodynamic model to characterize target cell depletion and cytokine release for T cell-redirecting bispecific agents in humans. Eur J Pharm Sci. 2020;146:105260. doi:10.1016/j.ejps.2020.105260.
  • Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, Kochanek M, Böll B, von Bergwelt-Baildon MS. Cytokine release syndrome. J Immunother Cancer. 2018;6(1). doi:10.1186/s40425-018-0343-9.
  • Liu S, Deng B, Yin Z, Pan J, Lin Y, Ling Z, Wu T, Chen D, Chang AH, Gao Z, et al. Corticosteroids do not influence the efficacy and kinetics of CAR-T cells for B-cell acute lymphoblastic leukemia. Blood Cancer J. 2020;10(2):20–23. doi:10.1038/s41408-020-0280-y.
  • Sun Z, De Xun R, Liu MS, Wu XQ, Qu HT. The association between glucocorticoid administration and the risk of impaired efficacy of axicabtagene ciloleucel treatment: a systematic review. Front Immunol. 2021;12(April):1–8. doi:10.3389/fimmu.2021.646450.
  • Nägele V, Kratzer A, Zugmaier G, Holland C, Hijazi Y, Topp MS, Gökbuget N, Baeuerle PA, Kufer P, Wolf A, et al. Changes in clinical laboratory parameters and pharmacodynamic markers in response to blinatumomab treatment of patients with relapsed/refractory ALL. Exp Hematol Oncol. 2017;6(1):1–14. doi:10.1186/s40164-017-0074-5.
  • Carvajal RD, Nathan P, Sacco JJ, Orloff M, Hernandez-Aya LF, Yang J, Luke JJ, Butler MO, Stanhope S, Collins L, et al. Phase I study of safety, tolerability, and efficacy of tebentafusp using a step-up dosing regimen and expansion in patients with metastatic uveal melanoma. J Clin Oncol. 2022;40(17):1939–48. doi:10.1200/JCO.21.01805.
  • Bartlett NL, Sehn LH, Assouline SE, Bosch F, Magid Diefenbach CS, Flinn I, Hong J, Kim WS, Matasar MJ, Nastoupil LJ, et al. Managing cytokine release syndrome (CRS) and neurotoxicity with step-fractionated dosing of mosunetuzumab in relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma (NHL). J Clin Oncol. 2019;37(15_suppl):7518–7518. doi:10.1200/JCO.2019.37.15_suppl.7518.
  • Liu JF, O’Malley DM. Phase 1/2 study of REGN4018, a MUC16 x CD3 bispecific antibody, as monotherapy or in combination with cemiplimab in patients with recurrent ovarian cancer. SGO 2021; Virtual meeting. Poster 10818.
  • Ravandi F, Bashey A, Stock W, Foran JM, Mawad R, Egan D, Blum W, Yang A, Pastore A, Johnson C, et al. Complete responses in relapsed/refractory Acute Myeloid Leukemia (AML) patients on a weekly dosing schedule of vibecotamab (XmAb14045), a CD123 x CD3 T cell-engaging bispecific antibody; initial results of a phase 1 study. Blood. 2020;136(Supplement 1):4–5. doi:10.1182/blood-2020-134746.
  • Patel K, Michot J-M, Chanan-Khan A, Ghesquieres H, Bouabdallah K, Byrd JC, Cartron G, Portell CA, Solh M, Tilly H, et al. Safety and anti-tumor activity of plamotamab (XmAb13676), an anti-CD20 x anti-CD3 bispecific antibody, in subjects with relapsed/refractory non-hodgkin’s lymphoma. Blood. 2021;138(Supplement 1):2494–2494. doi:10.1182/blood-2021-144350.
  • Usmani SZ, Garfall AL, van de Donk NWCJ, Nahi H, San-Miguel JF, Oriol A, Rosinol L, Chari A, Bhutani M, Karlin L, et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet. 2021;398(10301):665–74. doi:10.1016/S0140-6736(21)01338-6.
  • Hijazi Y, Klinger M, Kratzer A, Wu B, Baeuerle PA, Kufer P, Wolf A, Nagorsen D, Zhu M. Pharmacokinetic and pharmacodynamic relationship of blinatumomab in patients with non-hodgkin lymphoma. Curr Clin Pharmacol. 2018;13(1):55–64. doi:10.2174/1574884713666180518102514.
  • Hosseini I, Gadkar K, Stefanich E, Li CC, Sun LL, Chu YW, Ramanujan S. Mitigating the risk of cytokine release syndrome in a Phase I trial of CD20/CD3 bispecific antibody mosunetuzumab in NHL: impact of translational system modeling. Npj Syst Biol Appl. 2020;6(1). doi:10.1038/s41540-020-00145-7.
  • Chen X, Kamperschroer C, Wong G, Xuan D. A modeling framework to characterize cytokine release upon T-cell–engaging bispecific antibody treatment: methodology and opportunities. Clin Transl Sci. 2019;12(6):600–08. doi:10.1111/cts.12662.
  • El-Rayes B, Hendifar AE, Pant S, Wilky BA, Reilley M, Benson AB, Chow WA, Konda B, Starr J, Ahn DH, et al. Preliminary safety, pharmacodynamic, and antitumor activity of tidutamab, an SSTR2 x CD3 bispecific antibody, in subjects with advanced neuroendocrine tumors. Presented at: 2021 NANETS Annual Symposium; November 3–6, 2021; Virtual meeting. Abstract 109.
  • Bartlett NL, Giri P, Budde LE, Schuster SJ, Assouline S, Matasar MJ, Yoon -S-S, Canales M, Gutierrez NC, Fay K, et al. Subcutaneous (SC) administration of mosunetuzumab with cycle 1 step-up dosing is tolerable and active in patients with relapsed/refractory B-Cell Non-Hodgkin Lymphomas (R/R B-NHL): initial results from a phase I/II study. Blood. 2021;138(Supplement 1):3573–3573. doi:10.1182/blood-2021-147937.
  • Nooka AK, Moreau P, Usmani SZ, Garfall AL, van de Donk NWCJ, San-Miguel JF, Oriol Rocafiguera A, Chari A, Karlin L, Mateos M-V, et al. Teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): updated efficacy and safety results from MajesTEC-1. J Clin Oncol. 2022;40(16_suppl):8007–8007. doi:10.1200/JCO.2022.40.16_suppl.8007.
  • Minnema MC, Krishnan AY, Berdeja JG, Oriol Rocafiguera A, van de Donk NWCJ, Rodríguez-Otero P, Morillo D, Mateos M-V, Costa LJ, Caers J, et al. Efficacy and safety of talquetamab, a G protein-coupled receptor family C group 5 member D x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): updated results from MonumenTAL-1. J Clin Oncol. 2022;40(16_suppl):8015–8015. doi:10.1200/JCO.2022.40.16_suppl.8015.
  • Moreau P, Garfall AL, van de Donk NWCJ, Nahi H, San-Miguel JF, Oriol A, Nooka AK, Martin T, Rosinol L, Chari A, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. 2022;1–11. doi:10.1056/nejmoa2203478.
  • Li Z, Yu X, Li Y, Verma A, Chang HP, Shah DK. A two-pore physiologically based pharmacokinetic model to predict subcutaneously administered different-size antibody/antibody fragments. AAPS J. 2021;23(3):62. doi:10.1208/s12248-021-00588-8.
  • Sánchez-Félix M, Burke M, Chen HH, Patterson C, Mittal S. Predicting bioavailability of monoclonal antibodies after subcutaneous administration: open innovation challenge. Adv Drug Deliv Rev. 2020;167:66–77. doi:10.1016/j.addr.2020.05.009.
  • Hamuro L, Kijanka G, Kinderman F, Kropshofer H, Bu D, Zepeda M, Jawa V. Perspectives on subcutaneous route of administration as an immunogenicity risk factor for therapeutic proteins. J Pharm Sci. 2017;106(10):2946–54. doi:10.1016/j.xphs.2017.05.030.
  • Lim EA, Schweizer MT, Chi KN, Aggarwal RR, Agarwal N, Gulley JL, Attiyeh EF, Greger J, Wu S, Jaiprasart P, et al. Safety and preliminary clinical activity of JNJ-63898081 (JNJ-081), a PSMA and CD3 bispecific antibody, for the treatment of metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40(6_suppl):279–279. doi:10.1200/JCO.2022.40.6_suppl.279.
  • Shah M, Rahman A, Theoret MR, Pazdur R. The drug-dosing conundrum in oncology — when less is more. N Engl J Med. 2021;385(16):1445–47. doi:10.1056/NEJMp2109826.
  • Ramalingam SS, Ahn M-J, Akamatsu H, Blackhall FH, Borghaei H, Hummel H-D, Johnson ML, Reck M, Zhang Y, Jandial D, et al. Phase 2 study of tarlatamab, a DLL3-targeting, half life–extended, bispecific T-cell engager (HLE BiTE)immuno-oncology therapy, in relapsed/refractory small cell lung cancer (SCLC). J Clin Oncol. 2022;40(16_suppl):8603–8603. doi:10.1200/JCO.2022.40.16_suppl.TPS8603.
  • Trudel S, Cohen AD, Krishnan AY, Fonseca R, Spencer A, Berdeja JG, Lesokhin A, Forsberg PA, Laubach JP, Costa LJ, et al. Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated Relapsed/Refractory Multiple Myeloma (RRMM): updated results from an ongoing phase I study. Blood. 2021;138(Supplement 1):157–157. doi:10.1182/blood-2021-147983.
  • Li T, Hiemstra IH, Chiu C, Oliveri RS, Elliott B, DeMarco D, Salcedo T, Egerod FL, Sasser K, Ahmadi T, et al. Semimechanistic physiologically‐based pharmacokinetic/pharmacodynamic model informing epcoritamab dose selection for patients with <scp>B‐Cell&#x003C;/scp> lymphomas. Clin Pharmacol Ther. 2022;112(5):1108–19. doi:10.1002/cpt.2729.
  • Bröske A-ME, Korfi K, Belousov A, Wilson S, Ooi C-H, Bolen CR, Canamero M, Alcaide EG, James I, Piccione EC, et al. Pharmacodynamics and molecular correlates of response to glofitamab in relapsed/refractory non-hodgkin lymphoma. Blood Adv. 2022;6(3):1025–37. doi:10.1182/bloodadvances.2021005954.
  • Middleton MR, McAlpine C, Woodcock VK, Corrie P, Infante JR, Steven NM, Evans TRJ, Anthoney A, Shoushtari AN, Hamid O, et al. Tebentafusp, A TCR/Anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res. 2020;26(22):5869–78. doi:10.1158/1078-0432.CCR-20-1247.
  • Ma H, Wang H, Sove RJ, Jafarnejad M, Tsai CH, Wang J, Giragossian C, Popel AS. A quantitative systems pharmacology model of T cell engager applied to solid tumor. AAPS J. 2020;22(4):1–16. doi:10.1208/s12248-020-00450-3.
  • Ruella M, Maus MV. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput Struct Biotechnol J. 2016;14:357–62. doi:10.1016/j.csbj.2016.09.003.
  • Kang C. Mosunetuzumab: first approval. Drugs. 2022;0123456789:1–6. doi:10.1007/s40265-022-01749-5.
  • Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, Rasche L, Hartmann E, Dandekar T, Einsele H, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31(10):2181–90. doi:10.1038/leu.2017.41.
  • Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15(1):1. doi:10.1186/s12964-016-0160-z.
  • Kobold S, Pantelyushin S, Rataj F, Vom Berg J. Rationale for combining bispecific T cell activating antibodies with checkpoint blockade for cancer therapy. Front Oncol. 2018:8. doi:10.3389/fonc.2018.00285.
  • Sam J, Colombetti S, Fauti T, Roller A, Biehl M, Fahrni L, Nicolini V, Perro M, Nayak T, Bommer E, et al. Combination of T-cell bispecific antibodies with PD-L1 checkpoint inhibition elicits superior anti-tumor activity. Front Oncol. 2020;10. doi:10.3389/fonc.2020.575737.
  • Ma H, Wang H, Sové RJ, Wang J, Giragossian C, Popel AS. Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. J Immunother Cancer. 2020;8(2):1–11. doi:10.1136/jitc-2020-001141.
  • Sánchez J, Nicolini V, Fahrni L, Waldhauer I, Walz A-C, Jamois C, Fowler S, Simon S, Klein C, Umaña P, et al. Preclinical InVivo data integrated in a modeling network informs a refined clinical strategy for a CD3 T-cell bispecific in combination with anti-PD-L1. AAPS J. 2022;24(6):106. doi:10.1208/s12248-022-00755-5.
  • Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, Albrecht R, Herter S, Schlenker R, Hüsser T, et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 2019;11(496). doi:10.1126/scitranslmed.aav5989
  • Herter S, Sam J, Ferrara Koller C, Diggelmann S, Bommer E, Schönle A, Claus C, Bacac M, Klein C, Umana P. RG6076 (CD19-4-1BBL): CD19-targeted 4-1BB ligand combination with glofitamab as an off-the-shelf, enhanced T-cell redirection therapy for B-cell malignancies. Blood. 2020;136(Supplement 1):40–40. doi:10.1182/blood-2020-134782.
  • Winer IS, Shields AF, Yeku OO, Liu JF, Peterman MJ, Yoo SY, Lowy I, Yama-Dang NA, Goncalves PH, Kroog G. A phase I/II, multicenter, open-label study of REGN5668 (mucin [MUC]16 x CD28 bispecific antibody [bsAb]) with cemiplimab (programmed death [PD]-1 Ab) or REGN4018 (MUC16 x CD3 bsAb) in recurrent ovarian cancer (rOVCA). J Clin Oncol. 2021;39(15_suppl):5602–5602. doi:10.1200/JCO.2021.39.15_suppl.TPS5602.
  • Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S. Disease–drug–drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2011;89(5):735–40. doi:10.1038/clpt.2011.35.
  • Xu Y, Hijazi Y, Wolf A, Wu B, Sun Y, Zhu M. Physiologically based pharmacokinetic model to assess the influence of blinatumomab-mediated cytokine elevations on cytochrome P450 enzyme activity. CPT Pharmacometrics Syst Pharmacol. 2015;4(9):507–15. doi:10.1002/psp4.12003.
  • Budde LE, Ghosh N, Chavez JC, Lossos IS, Mehta A, Dorritie KA, Kamdar MK, Negricea R, Pham S, Hristopoulos M, et al. Promising tolerability and efficacy results from dose-escalation in an ongoing phase Ib/II study of mosunetuzumab (M) with polatuzumab vedotin (Pola) in patients (pts) with relapsed/refractory (R/R) B-cell non-Hodgkin’s lymphoma (B-NHL). J Clin Oncol. 2021;39(15_suppl):7520–7520. doi:10.1200/JCO.2021.39.15_suppl.7520.
  • Weddell J. Mechanistically modeling peripheral cytokine dynamics following bispecific dosing in solid tumors. CPT Pharmacom & Syst Pharma. 2023; Early View. doi:10.1002/psp4.12928.
  • Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662–80. doi:10.1038/s41568-020-0285-7.
  • Wu L, Seung E, Xu L, Rao E, Lord DM, Wei RR, Cortez-Retamozo V, Ospina B, Posternak V, Ulinski G, et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat Cancer. 2020;1(1):86–98. doi:10.1038/s43018-019-0004-z.
  • Abrams RE, Pierre K, Murr NE, Seung E, Wu L, Luna E, Mehta R, Li J, et al. Quantitative systems pharmacology modeling sheds light into the dose response relationship of a trispecific T cell engager in multiple myeloma. Sci Rep. 2022;12(1):10976. doi:10.1038/s41598-022-14726-5.
  • Herrmann M, Krupka C, Deiser K, Brauchle B, Marcinek A, Ogrinc Wagner A, Rataj F, Mocikat R, Metzeler KH, Spiekermann K, et al. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood. 2018;132(23):2484–94. doi:10.1182/blood-2018-05-849802.
  • Passariello M, Yoshioka A, Takahashi K, Hashimoto S, Rapuano Lembo R, Manna L, Nakamura K, De Lorenzo C. Novel bi-specific immuno-modulatory tribodies potentiate T cell activation and increase anti-tumor efficacy. Int J Mol Sci. 2022;23(7):3466. doi:10.3390/ijms23073466.
  • Dicara DM, Bhakta S, Go MA, Ziai J, Firestein R, Forrest B, Gu C, Leong SR, Lee G, Yu S-F, et al. Development of T-cell engagers selective for cells co-expressing two antigens. MAbs. 2022;14(1). doi:10.1080/19420862.2022.2115213
  • Panchal A, Seto P, Wall R, Hillier BJ, Zhu Y, Krakow J, Datt A, Pongo E, Bagheri A, Chen THT, et al. COBRA™: a highly potent conditionally active T cell engager engineered for the treaTMent of solid tumors. MAbs. 2020;12(1):1792130. doi:10.1080/19420862.2020.1792130.
  • Boustany LM, LaPorte SL, Wong L, White C, Vinod V, Shen J, Yu W, Koditek D, Winter MB, Moore S, et al. A Probody T Cell–engaging bispecific antibody targeting EGFR and CD3 inhibits colon cancer growth with limited toxicity. Cancer Res. 2022;82(22):4288–98. doi:10.1158/0008-5472.CAN-21-2483.
  • Stroh M, Sagert J, Burke JM, Apgar JF, Lin L, Millard BL, Kavanaugh WM. Quantitative systems pharmacology model of a masked, tumor-activated antibody. CPT Pharmacometrics Syst Pharmacol. 2019;8(9):676–84. doi:10.1002/psp4.12448.