9,447
Views
16
CrossRef citations to date
0
Altmetric
Review

Trends in industrialization of biotherapeutics: a survey of product characteristics of 89 antibody-based biotherapeutics

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2191301 | Received 21 Nov 2022, Accepted 10 Mar 2023, Published online: 30 Mar 2023

References

  • Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21–29. doi:10.1038/nrd2399. PMID: 18097458.
  • Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, Beck H, Emrich T, Harris RJ. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biolog. 2016;44(5):291–305. doi:10.1016/j.biologicals.2016.06.005. PMID: 27461239.
  • Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. Mabs. 2022;14(1):2014296. doi:10.1080/19420862.2021.2014296. PMID: 35030985.
  • Kaplon H, Reichert JM. Antibodies to watch in 2021. Mabs. 2021;13(1):1860476. doi:10.1080/19420862.2020.1860476. PMID: 33459118.
  • Kinch MS, Kraft Z, Schwartz T. Monoclonal antibodies: trends in therapeutic success and commercial focus. Drug Discov Today. 2023;28(1):103415. doi:10.1016/j.drudis.2022.103415. PMID: 36280042.
  • Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley LE, Prabakaran P, Rockx B, Sidorov IA, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc National Acad Sci. 2007;104(29):12123–28. doi:10.1073/pnas.0701000104. PMID: 17620608.
  • Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza a hemagglutinins. Sci. 2011;333(6044):850–56. doi:10.1126/science.1205669. PMID: 21798894.
  • Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, et al. Specificity, cross-reactivity, and function of antibodies elicited by zika virus infection. Sci. 2016;353(6301):823–26. doi:10.1126/science.aaf8505. PMID: 27417494.
  • Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1. doi:10.1186/s12929-019-0592-z. PMID: 31894001.
  • Xu J, Ou J, McHugh KP, Borys MC, Khetan A. Upstream cell culture process characterization and in-process control strategy development at pandemic speed. Mabs. 2022;14(1):2060724. doi:10.1080/19420862.2022.2060724. PMID: 35380922.
  • Pecetta S, Finco O, Seubert A. Quantum leap of monoclonal antibody (mAb) discovery and development in the COVID-19 era. Semin Immunol. 2020;50:101427–101427. doi:10.1016/j.smim.2020.101427. PMID: 33277154.
  • Kelley B. Developing therapeutic monoclonal antibodies at pandemic pace. Nat Biotechnol. 2020;38(5):540–45. doi:10.1038/s41587-020-0512-5. PMID: 32317764.
  • Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, et al. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. Mabs. 2022;14(1):2020082. doi:10.1080/19420862.2021.2020082. PMID: 35104168.
  • Farid SS, Baron M, Stamatis C, Nie W, Coffman J. Benchmarking biopharmaceutical process development and manufacturing cost contributions to R&D. Mabs. 2020;12(1):1754999. doi:10.1080/19420862.2020.1754999. PMID: 32449439.
  • La Merie Publishing. 2021 sales of recombinant therapeutic antibodies, proteins, biosimilars & other biologics; 2022. http://www.lamerie.com.
  • Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov. 2007;6(5):349–56. doi:10.1038/nrd2241. PMID: 17431406.
  • Pavlou AK, Belsey MJ. The therapeutic antibodies market to 2008. Eur J Pharm Biopharm. 2005;59(3):389–96. doi:10.1016/j.ejpb.2004.11.007. PMID: 15760719.
  • Presta LG. Selection, design, and engineering of therapeutic antibodies. J Allergy Clin Immun. 2005;116(4):731–36. doi:10.1016/j.jaci.2005.08.003. PMID: 16210043.
  • McNeil C. Monoclonal antibodies to watch. Jnci J National Cancer Inst. 1995;87(22): 1659–1659. doi:10.1093/jnci/87.22.1659.
  • Maggon K. Monoclonal antibody “gold rush. Curr Med Chem. 2007;14(18):1978–87. doi:10.2174/092986707781368504. PMID: 17691940.
  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. Mabs. 2015;7(1):9–14. doi:10.4161/19420862.2015.989042. PMID: 25529996.
  • Cui Y, Cui P, Chen B, Li S, Guan H. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm. 2017;43(4):1–39. doi:10.1080/03639045.2017.1278768. PMID: 28049357.
  • Wilkinson I, Hale G. Systematic analysis of the varied designs of 819 therapeutic antibodies and Fc fusion proteins assigned international nonproprietary names. Mabs. 2022;14(1):2123299. doi:10.1080/19420862.2022.2123299. PMID: 36109838.
  • Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. Mabs. 2014;2(5):466–79. doi:10.4161/mabs.2.5.12720. PMID: 20622510.
  • Raju TS, Jordan RE. Galactosylation variations in marketed therapeutic antibodies. Mabs. 2012;4(3): 310–309. doi:10.4161/mabs.19868. PMID: 22531450.
  • Singh SK. Impact of product‐related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354–87. doi:10.1002/jps.22276. PMID: 20740683.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. Biophysical properties of the clinical-stage antibody landscape. Proc National Acad Sci. 2017;114(5):944–49. doi:10.1073/pnas.1616408114. PMID: 28096333.
  • Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018;9(1):86–120. doi:10.1007/s13238-017-0457-8. PMID: 28822103.
  • Reichert JM. Antibodies to watch in 2010. Mabs. 2010;2(1):84–100. doi:10.4161/mabs.2.1.10677. PMID: 20065640.
  • Reichert JM. Antibody-based therapeutics to watch in 2011. Mabs. 2011;3(1):76–99. doi:10.4161/mabs.3.1.13895. PMID: 21051951.
  • Reichert JM. Which are the antibodies to watch in 2012? Mabs. 2012;4(1):1–3. doi:10.4161/mabs.4.1.18719. PMID: 22327425.
  • Reichert JM. Which are the antibodies to watch in 2013? Mabs. 2013;5(1):1–4. doi:10.4161/mabs.22976. PMID: 23254906.
  • Reichert JM. Antibodies to watch in 2013. Mabs. 2013;5(4):513–17. doi:10.4161/mabs.24990. PMID: 23727858.
  • Reichert JM. Antibodies to watch in 2014. Mabs. 2013;6(1):5–14. doi:10.4161/mabs.27333. PMID: 24284914.
  • Reichert JM. Antibodies to watch in 2014. Mabs. 2014;6(4):799–802. doi:10.4161/mabs.29282. PMID: 24846335.
  • Reichert JM. Antibodies to watch in 2015. Mabs. 2015;7(1):1–8. doi:10.4161/19420862.2015.988944. PMID: 25484055.
  • Reichert JM. Antibodies to watch in 2016. Mabs. 2015;8(2):197–204. doi:10.1080/19420862.2015.1125583. PMID: 26651519.
  • Reichert JM. Antibodies to watch in 2017. Mabs. 2017;9(2): 00–00. doi:10.1080/19420862.2016.1269580. PMID: 27960628.
  • Kaplon H, Reichert JM. Antibodies to watch in 2018. Mabs. 2018;10(2): 00–00. doi:10.1080/19420862.2018.1415671. PMID: 29300693.
  • Kaplon H, Reichert JM. Antibodies to watch in 2019. Mabs. 2018;11(2):219–38. doi:10.1080/19420862.2018.1556465. PMID: 30516432.
  • Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. Mabs. 2019;12(1):1703531. doi:10.1080/19420862.2019.1703531. PMID: 31847708.
  • Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol. 2021;41(2):300–15. doi:10.1080/07388551.2020.1869684. PMID: 33430641.
  • Kaur H. Stability testing in monoclonal antibodies. Crit Rev Biotechnol. 2021;41(5):692–714. doi:10.1080/07388551.2021.1874281. PMID: 33596751.
  • Lai Y, Suo S, Wang R, Kong X, Hu Y, Tang D, Shi H, Chen S, Hu H. Trends involving monoclonal antibody (mAb) research and commercialization: a scientometric analysis of IMS lifecycle R&D focus database (1980–2016). Hum Vacc Immunother. 2018;14(4): 00–00. doi:10.1080/21645515.2017.1420445. PMID: 29293380.
  • Abd YE, Tabll A, Smolic R, Smolic M. Mini-review: the market growth of diagnostic and therapeutic monoclonal antibodies – SARS CoV-2 as an example. Hum Antibodies. 2022;30(1):15–24. doi:10.3233/hab-211513. PMID: 34958012.
  • Focosi D, Tuccori M, Baj A, Maggi F. SARS-CoV-2 variants: a synopsis of in vitro efficacy data of convalescent plasma, currently marketed vaccines, and monoclonal antibodies. Viruses. 2021;13(7):1211. doi:10.3390/v13071211. PMID: 34201767.
  • Folkman R, Blennow O, Tovatt T, Pettersson K, Nowak P. Treatment of COVID-19 with monoclonal antibodies casirivimab and imdevimab in pregnancy. Infect. 2022;51(1):1–3. doi:10.1007/s15010-022-01829-4. PMID: 35482208.
  • Smith S. Ten years of orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coordination. 1996;6(3):109–21. doi:10.7182/prtr.1.6.3.8145l3u185493182. PMID: 9188368.
  • U.S. Food and Drug Administration (FDA). Drugs@FDA; 2022 [accessed 2022 Feb 8]. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.
  • European Medicines Agency (EMA). EMA medicines; 2022 [accessed 2022 Feb 8]. https://www.ema.europa.eu/en/medicines.
  • World Health Organization (WHO). School of international nonproprietary names; 2022 [accessed 2022 Feb 8]. https://extranet.who.int/soinn/.
  • World Health Organization (WHO). INN and biologicals; 2022 [accessed 2022 Feb 8]. https://www.who.int/teams/health-product-and-policy-standards/inn/inn-bio.
  • Reichert JM. Marketed therapeutic antibodies compendium. Mabs. 2012;4(3):413–15. doi:10.4161/mabs.19931. PMID: 22531442.
  • Swan D, Loughran N, Makris M, Thachil J. Management of bleeding and procedures in patients on antiplatelet therapy. Blood Rev. 2020;39:100619. doi:10.1016/j.blre.2019.100619. PMID: 31648803.
  • Jayaraman K. Biocon’s first-in-class anti-CD6 mAb reaches the market. Nat Biotechnol. 2013;31(12):1062–63. doi:10.1038/nbt1213-1062b. PMID: 24316625.
  • Ramakrishnan MS, Eswaraiah A, Crombet T, Piedra P, Saurez G, Iyer H, Arvind AS. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. Mabs. 2014;1(1):41–48. doi:10.4161/mabs.1.1.7509. PMID: 20046573.
  • Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (CECMED). Resumen de las características del producto; 2020 [accessed 2022 Feb 9]. https://www.cecmed.cu/registro/rcp/biologicos/vaxirar-racotumomab.
  • Administración Nacional de Medicamentos. Alimentos y tecnologia médica (ANMAT). Disposición 9016-16; 2016 [accessed 2022 Feb 9]. www.anmat.gov.ar/boletin_anmat/agosto_2016/Dispo_9016-16.pdf.
  • Committee for Orphan Medicinal Products (COMP). Public summary of opinion on orphan designation Iodine (131I) tositumomab for the treatment of follicular lymphoma; 2015 [accessed 2022 Oct 25]. https://www.ema.europa.eu/en/documents/orphan-designation/eu/3/03/136-public-summary-positive-opinion-orphan-designation-iodine-131i-tositumomab-treatment-follicular_en.pdf.
  • European Medicines Agency (EMA). Refusal of the marketing authorisation for gamifant (emapalumab); 2020 [accessed 2022 Oct 25]. https://www.ema.europa.eu/en/documents/smop-initial/questions-answers-refusal-marketing-authorisation-gamifant-emapalumab_en.pdf.
  • European Medicines Agency (EMA). European medicines agency decision; 2016 [accessed 2022 Oct 25]. https://www.ema.europa.eu/en/documents/pip-decision/p/0345/2016-ema-decision-2-december-2016-granting-product-specific-waiver-teprotumumab-emea-001973-pip01-16_en.pdf.
  • Egger GF, Wharton GT, Malli S, Temeck J, Murphy MD, Tomasi P. A comparative review of waivers granted in pediatric drug development by FDA and EMA from 2007-2013. Ther Innov Regul Sci. 2016;50(5):639–47. doi:10.1177/2168479016646809. PMID: 27274951.
  • Mullard A. Drug withdrawal sends critical care specialists back to basics. Lancet. 2011;378(9805):1769. doi:10.1016/s0140-6736(11)61761-3. PMID: 22106464.
  • Viardot A, Bargou R. Bispecific antibodies in haematological malignancies. Cancer Treat Rev. 2018;65:87–95. doi:10.1016/j.ctrv.2018.04.002. PMID: 29635163.
  • Goldberg RM. Lessons learned from the edrecolomab story: how a checkered past became a checkered flag for monoclonal antibodies in colorectal cancer therapy. Oncol Res Treat. 2005;28(6–7):311–12. doi:10.1159/000085570. PMID: 15933417.
  • World Health Organization (WHO). The use of stems in the selection of international nonproprietary names (INN) for pharmaceutical substances 2018; 2018 [accessed 2022 Feb 9]. https://cdn.who.int/media/docs/default-source/international-nonproprietary-names-inn/stembook-2018.pdf
  • Serafini M, Cargnin S, Massarotti A, Tron GC, Pirali T, Genazzani AA. What’s in a name? Drug nomenclature and medicinal chemistry trends using INN publications. J Med Chem. 2021;64(8):4410–29. doi:10.1021/acs.jmedchem.1c00181. PMID: 33847110.
  • Blaine L. The nomenclature of monoclonal antibodies. 1990. pp. 71–84. doi:10.1007/978-3-642-76011-2_8.
  • World Health Organization (WHO). Guidelines on the use of international nonproprietary names for pharmaceutical substances; 1997 [accessed 2022 Sep 19]. http://whqlibdoc.who.int/hq/1997/WHO_PHARM_S_NOM_1570.pdf.
  • World Health Organization (WHO). General policies for monoclonal antibodies; 2009 [accessed 2022 Feb 9]. https://www.who.int/medicines/services/inn/generalpoliciesmonoclonalantibodiesjan10.pdf.
  • World Health Organization (WHO). Revised monoclonal antibody (mAb) nomenclature scheme; 2017 [accessed 2022 Feb 9]. https://www.who.int/medicines/services/inn/Revised_mAb_nomenclature_scheme.pdf.
  • World Health Organization (WHO). New INN monoclonal antibody (mAb) nomenclature scheme; 2021 [accessed 2022 Jun 1]. https://cdn.who.int/media/docs/default-source/international-nonproprietary-names-inn/new_mab_-nomenclature-_2021.pdf
  • Koch SSG, Thorpe R, Kawasaki N, Lefranc MP, Malan S, Martin ACR, Mignot G, Plückthun A, Rizzi M, Shubat S, et al. International nonproprietary names for monoclonal antibodies: an evolving nomenclature system. Mabs. 2022;14(1):2075078. doi:10.1080/19420862.2022.2075078. PMID: 35584276.
  • Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17(20):6398–405. doi:10.1158/1078-0432.ccr-11-0487. PMID: 22003067.
  • McCombs JR, Owen SC. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. Aaps J. 2015;17(2):339–51. doi:10.1208/s12248-014-9710-8. PMID: 25604608.
  • Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, et al. CAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65. doi:10.1182/blood-2003-01-0039. PMID: 12714494.
  • Younes A, Yasothan U, Kirkpatrick P. Brentuximab vedotin. Nat Rev Drug Discov. 2012;11(1):19–20. doi:10.1038/nrd3629. PMID: 22212672.
  • Fenton C, Perry CM. Gemtuzumab ozogamicin. Drugs. 2005;65(16):2405–27. doi:10.2165/00003495-200565160-00014. PMID: 16266206.
  • Wiseman GA, Gordon LI, Multani PS, Witzig TE, Spies S, Bartlett NL, Schilder RJ, Murray JL, Saleh M, Allen RS, et al. Ibritumomab tiuxetan radioimmunotherapy for patients with relapsed or refractory non-hodgHodgkin lymphoma and mild thrombocytopenia: a phase II multicenter trial. Blood. 2002;99(12):4336–42. doi:10.1182/blood.v99.12.4336. PMID: 12036859.
  • Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ, Vahdat LT, Thomas SS, Govindan SV, Maliakal PP, Wegener WA, et al. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21(17):3870–78. doi:10.1158/1078-0432.ccr-14-3321. PMID: 25944802.
  • Goel N, Stephens S. Certolizumab pegol. Mabs. 2010;2(2):137–47. doi:10.4161/mabs.2.2.11271. PMID: 20190560.
  • Blick SKA, Curran MP. Certolizumab pegol. Biodrugs. 2007;21(3):195–201. doi:10.2165/00063030-200721030-00006. PMID: 17516714.
  • Pasut G. Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol. Biodrugs. 2014;28(S1):15–23. doi:10.1007/s40259-013-0064-z. PMID: 24687235.
  • Ladwig PM, Barnidge DR, Willrich MAV. Quantification of the IgG2/4 kappa monoclonal therapeutic eculizumab from serum using isotype specific affinity purification and microflow LC-ESI-Q-TOF mass spectrometry. J Am Soc Mass Spectr. 2017;28(5):811–17. doi:10.1007/s13361-016-1566-y. PMID: 28004336.
  • World Health Organization (WHO). International nonproprietary names for pharmaceutical substances (INN): proposed INN: list 117; 2017 [accessed 2022 Sep 20]. https://cdn.who.int/media/docs/default-source/international-nonproprietary-names-(inn)/pl117.pdf.
  • Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2020;49(D1):D480–9. doi:10.1093/nar/gkaa1100. PMID: 33237286.
  • Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive immunotherapy against SARS-CoV-2: from plasma-based therapy to single potent antibodies in the race to stay ahead of the variants. Biodrugs. 2022;36(3):231–323. doi:10.1007/s40259-022-00529-7. PMID: 35476216.
  • Aschenbrenner DS. New indications and approvals for anticancer drugs. Ajn Am J Nurs. 2021;121(12):16–17. doi:10.1097/01.naj.0000803180.17463.0b. PMID: 34792500.
  • Kim MS, Xu A, Haslam A, Prasad V. Quality of biomarker defined subgroups in FDA approvals of PD‐1/PD‐L1 inhibitors 2014 to 2020. Int J Cancer. 2022;150(11):1905–10. doi:10.1002/ijc.33968. PMID: 35182072.
  • Ahn S, Lee J, Shin DW, Kim J, Hwang JH. High PD-L1 expression is associated with therapeutic response to pembrolizumab in patients with advanced biliary tract cancer. Sci Rep-Uk. 2020;10(1):12348. doi:10.1038/s41598-020-69366-4. PMID: 32704067.
  • Mo DC, Luo PH, Huang SX, Wang HL, Huang JF. Safety and efficacy of pembrolizumab plus lenvatinib versus pembrolizumab and lenvatinib monotherapies in cancers: a systematic review. Int Immunopharmacol. 2021;91:107281. doi:10.1016/j.intimp.2020.107281. PMID: 33338862.
  • Qin Q, Li B. Pembrolizumab for the treatment of nonsmall cell lung cancer: current status and future directions. J Canc Res Ther. 2019;15(4):743. doi:10.4103/jcrt.jcrt_903_18. PMID: 31436226.
  • Neri P, Zucchi M, Allegri P, Lettieri M, Mariotti C, Giovannini A. Adalimumab (HumiraTM): a promising monoclonal anti-tumor necrosis factor alpha in ophthalmology. Int Ophthalmol. 2011;31(2):165–73. doi:10.1007/s10792-011-9430-3. PMID: 21287227.
  • Patel T, Gordon KB. Adalimumab: efficacy and safety in psoriasis and rheumatoid arthritis. Dermatol Ther. 2004;17(5):427–31. doi:10.1111/j.1396-0296.2004.04045.x. PMID: 15379777.
  • Alwawi EA, Mehlis SL, Gordon KB. Treating psoriasis with adalimumab. Ther Clin Risk Manag. 2008;4:345–51. doi:10.2147/tcrm.s1265. PMID: 18728850.
  • Almagro JC, Fransson J. Humanization of antibodies. Frontiers Biosci J Virtual Libr. 2007;13:1619–33. doi:10.2741/2786. PMID: 17981654.
  • Vaswani SK, Hamilton RG. Humanized antibodies as potential therapeutic drugs. Ann Allergy Asthma Immunol. 1998;81(2):105–19. doi:10.1016/s1081-1206(10)62794-9. PMID: 9723555.
  • Rochere PDL, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E. Humanized mice for the study of immuno-oncology. Trends Immunol. 2018;39(9):748–63. doi:10.1016/j.it.2018.07.001. PMID: 30077656.
  • Sgro C. Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicol. 1995;105(1):23–29. doi:10.1016/0300-483x(95)03123-w. PMID: 8638282.
  • Clark M, Clark M. Antibody humanization: a case of the ‘emperor’s new clothes’? Immunol Today. 2000;21(8):397–402. doi:10.1016/s0167-5699(00)01680-7. PMID: 10916143.
  • Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10. doi:10.1016/j.ymeth.2005.01.001. PMID: 15848070.
  • Kessler M, Goldsmith D, Schellekens H. Immunogenicity of biopharmaceuticals. Nephrol Dial Transpl. 2006;21(suppl_5):v9–12. doi:10.1093/ndt/gfl476. PMID: 16959792.
  • U.S. Food and Drug Administration (FDA). Highlights of prescribing information (MYLOTARG); 2020 [accessed 2022 Oct 25]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761060s004lbl.pdf.
  • Lee JE, Liu J, John C, Williams G, Rahman NA, Wang Y Clinical pharmacology and biopharmaceutics (Mylotarg); 2016 [accessed 2022 Oct 25]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761060Orig1s000Orig1Orig2s000ClinPharmR.pdf.
  • European Medicines Agency (EMA). Guideline on immunogenicity assessment of therapeutic proteins; 2017. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en.pdf.
  • U.S. Food and Drug Administration (FDA). Immunogenicity testing of therapeutic protein products — developing and validating assays for anti-drug antibody detection; 2019. https://www.fda.gov/media/119788/download.
  • Pratt KP. Anti-drug antibodies: emerging approaches to predict, reduce or reverse biotherapeutic immunogenicity. Antibodies. 2018;7(2):19. doi:10.3390/antib7020019. PMID: 31544871.
  • Myler H, Pedras-Vasconcelos J, Phillips K, Hottenstein CS, Chamberlain P, Devanaryan V, Gleason C, Goodman J, Manning MS, Purushothama S, et al. Anti-drug antibody validation testing and reporting harmonization. Aaps J. 2021;24(1):4. doi:10.1208/s12248-021-00649-y. PMID: 34853961.
  • Schellekens H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transpl. 2005;20(suppl_6):vi3–9. doi:10.1093/ndt/gfh1092. PMID: 15958824.
  • Meis CM, Salzman EE, Maikawa CL, Smith AAA, Mann JL, Grosskopf AK, Appel EA. Self-assembled, dilution-responsive hydrogels for enhanced thermal stability of insulin biopharmaceuticals. Acs Biomater Sci Eng. 2021;7(9):4221–29. doi:10.1021/acsbiomaterials.0c01306. PMID: 34510910.
  • Buckley LA, Salunke S, Thompson K, Baer G, Fegley D, Turner MA. Challenges and strategies to facilitate formulation development of pediatric drug products: safety qualification of excipients. Int J Pharmaceut. 2018;536(2):563–69. doi:10.1016/j.ijpharm.2017.07.042. PMID: 28729174.
  • Pilunni D, Santuccio C, Sottosanti L, Felicetti P, Navarra P. Relationship between injection site reactions and different adalimumab formulations. Analysis of the adverse events reported in Italy in the period 2016-2019. Eur Rev Med Pharmaco. 2021;25:3300–05. doi:10.26355/eurrev_202104_25468. PMID: 33928613.
  • Yang YL, Lai TW. Citric acid in drug formulations causes pain by potentiating acid-sensing ion channel 1. J Neurosci. 2021;41(21):4596–606. doi:10.1523/jneurosci.2087-20.2021. PMID: 33888605.
  • Clair-Jones AS, Prignano F, Goncalves J, Paul M, Sewerin P. Understanding and minimising injection-site pain following subcutaneous administration of biologics: a narrative review. Rheumatology Ther. 2020;7(4):741–57. doi:10.1007/s40744-020-00245-0. PMID: 33206343.
  • Shi GH, Pisupati K, Parker JG, Corvari VJ, Payne CD, Xu W, Collins DS, Felippis MRD. Subcutaneous injection site pain of formulation matrices. Pharmaceut Res. 2021;38(5):779–93. doi:10.1007/s11095-021-03047-3. PMID: 33942212.
  • Ionova Y, Wilson L, Mallela KMG. Biologic excipients: importance of clinical awareness of inactive ingredients. Plos One. 2020;15(6):e0235076. doi:10.1371/journal.pone.0235076. PMID: 32584876.
  • Nash P, Vanhoof J, Hall S, Arulmani U, Tarzynski-Potempa R, Unnebrink K, Payne AN, Cividino A. Randomized crossover comparison of injection site pain with 40 mg/0.4 or 0.8 mL formulations of adalimumab in patients with rheumatoid arthritis. Rheumatol Ther. 2016;3(2):257–70. doi:10.1007/s40744-016-0041-3. PMID: 27747583.
  • Usach I, Martinez R, Festini T, Peris J-E. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv Ther. 2019;36(11):2986–96. doi:10.1007/s12325-019-01101-6. PMID: 31587143.
  • Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9(4):325–38. doi:10.1038/nrd3003. PMID: 20305665.
  • Jiao Z, Wang G, Feng Z, Yan Z, Zhang J, Li G, Wang Q, Feng D. Safety profile of monoclonal antibody compared with traditional anticancer drugs: an analysis of Henan province spontaneous reporting system database. Front Pharmacol. 2022;12:760013. doi:10.3389/fphar.2021.760013. PMID: 35145400.
  • Li Y, Qi L, Bai H, Sun C, Xu S, Wang Y, Han C, Li Y, Liu L, Cheng X, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of a monoclonal antibody (SCTA01) targeting SARS-CoV-2 in healthy adults: a randomized, double-blind, placebo-controlled, phase I study. Antimicrob Agents Ch. 2021;65(11):e01063–21. doi:10.1128/aac.01063-21. PMID: 34491805.
  • Hoe S, Boraey MA, Ivey JW, Finlay WH, Vehring R. Manufacturing and device options for the delivery of biotherapeutics. J Aerosol Med Pulm D. 2014;27(5):315–28. doi:10.1089/jamp.2013.1090. PMID: 24299502.
  • Keytruda [Package Insert], ORIG-1. 2014 [accessed 2022 Sep 23]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125514lbl.pdf.
  • Keytruda [Package Insert], SUPPL-3. 2015 [accessed 2022 Sep 23]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125514s003lbl.pdf.
  • Keytruda [Package Insert], SUPPL-67. 2019 [accessed 2022 Sep 23]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s067lbl.pdf.
  • Fanelli JL. Injection: the third method of drug administration. Review of Optometry. 2012;149:32+.
  • Dornbos BD, Moliterno CD. Injection procedures encountered in optometry [dissertation]. Big Rapids (MI): Ferris State University; 2012.
  • Arivazhahan A. Introduction to basics of pharmacology and toxicology, volume 1: general and molecular pharmacology: principles of drug action. 2019. pp. 69–79. doi:10.1007/978-981-32-9779-1_4.
  • U.S. Food and Drug Administration (FDA). Route of administration | FDA; 2017 [accessed 2022 Sep 27]. https://www.fda.gov/drugs/data-standards-manual-monographs/route-administration.
  • Locke KW, Maneval DC, LaBarre MJ. ENHANZE® drug delivery technology: a novel approach to subcutaneous administration using recombinant human hyaluronidase PH20. Drug Deliv. 2019;26(1):98–106. doi:10.1080/10717544.2018.1551442. PMID: 30744432.
  • Heo YA, Syed YY. Subcutaneous trastuzumab: a review in HER2-positive breast cancer. Target Oncol. 2019;14(6):749–58. doi:10.1007/s11523-019-00684-y. PMID: 31686307.
  • Villalba ML. Medical review; 2016 [accessed 2022 Apr 11]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/761029Orig1s000MedR.pdf.
  • Ribrag V, Dupuis J, Tilly H, Morschhauser F, Laine F, Houot R, Haioun C, Copie C, Varga A, Lambert J, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-hodgHodgkin lymphoma. Clin Cancer Res. 2014;20(1):213–20. doi:10.1158/1078-0432.ccr-13-0580. PMID: 24132920.
  • Jonaitis L, Marković S, Farkas K, Gheorghe L, Krznarić Ž, Salupere R, Mokricka V, Spassova Z, Gatev D, Grosu I, et al. Intravenous versus subcutaneous delivery of biotherapeutics in IBD: an expert’s and patient’s perspective. BMC Proc. 2021;15(S17):25. doi:10.1186/s12919-021-00230-7. PMID: 34879868.
  • Falanga M, Canzona A, Mazzoni D. Preference for subcutaneous injection or intravenous infusion of biological therapy among Italian patients with SLE. J Patient Exp. 2019;6(1):41–45. doi:10.1177/2374373518770811. PMID: 31236450.
  • Overton PM, Shalet N, Somers F, Allen JA. Patient preferences for subcutaneous versus intravenous administration of treatment for chronic immune system disorders: a systematic review. Patient Prefer Adher. 2021;15:811–34. doi:10.2147/ppa.s303279. PMID: 33907384.
  • Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–88. doi:10.1016/s1359-6446(05)03638-x. PMID: 16478695.
  • Toutain PL, Bousquet‐mélou A. Plasma terminal half‐life. J Vet Pharmacol Ther. 2004;27(6):427–39. doi:10.1111/j.1365-2885.2004.00600.x. PMID: 15601438.
  • Birkett DJ. Pocket guide: pharmacokinetics made easy. Maidenhead, England: McGraw-Hill Education; 2009.
  • Smith DA, Beaumont K, Maurer TS, Di L. Volume of distribution in drug design. J Med Chem. 2015;58(15):5691–98. doi:10.1021/acs.jmedchem.5b00201. PMID: 25799158.
  • Toutain PL, Bousquet-Mélou A. Bioavailability and its assessment. J Vet Pharmacol Ther. 2004;27(6):455–66. doi:10.1111/j.1365-2885.2004.00604.x. PMID: 15601440.
  • Kuna M, Mahdi F, Chade AR, Bidwell GL. Molecular size modulates pharmacokinetics, biodistribution, and renal deposition of the drug delivery biopolymer elastin-like polypeptide. Sci Rep-Uk. 2018;8(1):7923. doi:10.1038/s41598-018-24897-9. PMID: 29784932.
  • Byers JP, Sarver JG. Chapter 10 - pharmacokinetic modeling. In: Hacker M, Messer W Bachmann K, editors. Pharmacology: principles and practice. San Diego: Academic Press; 2009. pp. 201–77. doi:10.1016/b978-0-12-369521-5.00010-5.
  • Andrade C. The practical importance of half-life in psychopharmacology. J Clin Psychiatry. 2022;83:4. doi:10.4088/jcp.22f14584. PMID: 35900254.
  • Durairaj C, Shah JC, Senapati S, Kompella UB. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure–pharmacokinetic relationships (QSPKR). Pharmaceut Res. 2008;26(5):1236. doi:10.1007/s11095-008-9728-7. PMID: 18841448.
  • Keizer RJ, Huitema ADR, Schellens JHM, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507. doi:10.2165/11531280-000000000-00000. PMID: 20608753.
  • Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59. doi:10.2165/11535960-000000000-00000. PMID: 20818831.
  • Dall’acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, Wu H, Kiener PA, Langermann S. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol. 2002;169(9):5171–80. doi:10.4049/jimmunol.169.9.5171. PMID: 12391234.
  • Vaccaro C, Bawdon R, Wanjie S, Ober RJ, Ward ES. Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc National Acad Sci. 2006;103(49):18709–14. doi:10.1073/pnas.0606304103. PMID: 17116867.
  • Wang W, Wang E, Balthasar J. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58. doi:10.1038/clpt.2008.170. PMID: 18784655.
  • Gibson JG, Evans WA. Clinical studies of the blood volume. II. The relation of plasma and total blood volume to venous pressure, blood velocity rate, physical measurements, age and sex in ninety normal humans. J Clin Invest. 1937;16(3):317–28. doi:10.1172/jci100860. PMID: 16694481.
  • Gibaldi M, McNamara PJ. Apparent volumes of distribution and drug binding to plasma proteins and tissues. Eur J Clin Pharmacol. 1978;13(5):373–78. doi:10.1007/bf00644611. PMID: 668796.
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. Cpt Pharmacometrics Syst Pharmacol. 2017;6(9):576–88. doi:10.1002/psp4.12224. PMID: 28653357.
  • Bookbinder LH, Hofer A, Haller MF, Zepeda ML, Keller G-A, Lim JE, Edgington TS, Shepard HM, Patton JS, Frost GI. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release. 2006;114(2):230–41. doi:10.1016/j.jconrel.2006.05.027. PMID: 16876899.
  • Sime FB, Roberts MS, Roberts JA. Optimization of dosing regimens and dosing in special populations. Clin Microbiol Infec. 2015;21(10):886–93. doi:10.1016/j.cmi.2015.05.002. PMID: 25980350.
  • Tabrizi M, Neupane D, Elie SE, Shankaran H, Juan V, Zhang S, Hseih S, Fayadat-Dilman L, Zhang D, Song Y, et al. Pharmacokinetic properties of humanized IgG1 and IgG4 antibodies in preclinical species: translational evaluation. Aaps J. 2019;21(3):39. doi:10.1208/s12248-019-0304-3. PMID: 30868312.
  • Wang W, Prueksaritanont T. Prediction of human clearance of therapeutic proteins: simple allometric scaling method revisited. Biopharm Drug Dispos. 2010;31:253–63. doi:10.1002/bdd.708. PMID: 20437464.
  • Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel. 2010;23(5):385–92. doi:10.1093/protein/gzq009. PMID: 20159773.
  • Yang D, Kroe-Barrett R, Singh S, Laue T. IgG charge: practical and biological implications. Antibodies. 2019;8(1):24. doi:10.3390/antib8010024. PMID: 31544830.
  • Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O’hara DM, Tchistiakova L, Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. Mabs. 2018;10(1):81–94. doi:10.1080/19420862.2017.1389355. PMID: 28991504.
  • Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjugate Chem. 2010;21(12):2153–63. doi:10.1021/bc100261d. PMID: 21053952.
  • Yadav DB, Sharma VK, Boswell CA, Hotzel I, Tesar D, Shang Y, Ying Y, Fischer SK, Grogan JL, Chiang EY, et al. Evaluating the use of antibody variable region (Fv) charge as a risk assessment tool for predicting typical cynomolgus monkey pharmacokinetics*. J Biol Chem. 2015;290(50):29732–41. doi:10.1074/jbc.m115.692434. PMID: 26491012.
  • Datta-Mannan A, Thangaraju A, Leung D, Tang Y, Witcher DR, Lu J, Wroblewski VJ. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. Mabs. 2015;7(3):483–93. doi:10.1080/19420862.2015.1016696. PMID: 25695748.
  • Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci Adv. 2020;6(32):eabb0372. doi:10.1126/sciadv.abb0372. PMID: 32923611.
  • Khawli LA, Glasky MS, Alauddin MM, Epstein AL. Improved tumor localization and radioimaging with chemically modified monoclonal antibodies. Cancer Biotherapy Radiopharm. 1996;11(3):203–15. doi:10.1089/cbr.1996.11.203. PMID: 10851539.
  • Li L, Kumar S, Buck PM, Burns C, Lavoie J, Singh SK, Warne NW, Nichols P, Luksha N, Boardman D. Concentration dependent viscosity of monoclonal antibody solutions: explaining experimental behavior in terms of molecular properties. Pharmaceut Res. 2014;31(11):3161–78. doi:10.1007/s11095-014-1409-0. PMID: 24906598.
  • Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I, et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc National Acad Sci. 2014;111(52):18601–06. doi:10.1073/pnas.1421779112. PMID: 25512516.
  • Strickley RG, Lambert WJ. A review of formulations of commercially available antibodies. J Pharm Sci. 2021;110(7):e56. doi:10.1016/j.xphs.2021.03.017. PMID: 33789155.
  • Garidel P, Blume A, Wagner M. Prediction of colloidal stability of high concentration protein formulations. Pharm Dev Technol. 2014;20(3):367–74. doi:10.3109/10837450.2013.871032. PMID: 24392929.
  • Sun MF, Liao JN, Jing ZY, Gao H, Shen BB, Y-F X, Fang WJ. Effects of polyol excipient stability during storage and use on the quality of biopharmaceutical formulations. J Pharm Analysis. 2022;12(5):774–82. doi:10.1016/j.jpha.2022.03.003.
  • James S, McManus JJ. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose. J Phys Chem B. 2012;116(34):10182–88. doi:10.1021/jp303898g. PMID: 22909409.
  • Gervasi V, Agnol RD, Cullen S, McCoy T, Vucen S, Crean A. Parenteral protein formulations: an overview of approved products within the European union. Eur J Pharm Biopharm. 2018;131:8–24. doi:10.1016/j.ejpb.2018.07.011. PMID: 30006246.
  • Liu GY, Nie S, Zheng X, Li N. Activity-based protein profiling probe for the detection of enzymes catalyzing polysorbate degradation. Anal Chem. 2022;94(24):8625–32. doi:10.1021/acs.analchem.2c00059.
  • Jones MT, Mahler HC, Yadav S, Bindra D, Corvari V, Fesinmeyer RM, Gupta K, Harmon AM, Hinds KD, Koulov A, et al. Considerations for the use of polysorbates in biopharmaceuticals. Pharmaceut Res. 2018;35(8):148. doi:10.1007/s11095-018-2430-5. PMID: 29797101.
  • Dwivedi M, Blech M, Presser I, Garidel P. Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes. Int J Pharmaceut. 2018;552(1–2):422–36. doi:10.1016/j.ijpharm.2018.10.008. PMID: 30300706.
  • Singh SK, Kolhe P, Mehta AP, Chico SC, Lary AL, Huang M. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharmaceut Res. 2011;28(4):873–85. doi:10.1007/s11095-010-0343-z. PMID: 21213025.
  • Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26. doi:10.1002/jps.20727. PMID: 16998873.
  • Neergaard MS, Nielsen AD, Parshad H, Weert MVD. Stability of monoclonal antibodies at high‐Concentration: head‐to‐head comparison of the IgG1 and IgG4 subclass. J Pharm Sci. 2014;103(1):115–27. doi:10.1002/jps.23788. PMID: 24282022.
  • Garidel P, Kuhn AB, Schäfer LV, Karow-Zwick AR, Blech M. High-concentration protein formulations: how high is high? Eur J Pharm Biopharm. 2017;119:353–60. doi:10.1016/j.ejpb.2017.06.029. PMID: 28690199.
  • Agrawal NJ, Helk B, Kumar S, Mody N, Sathish HA, Samra HS, Buck PM, Li L, Trout BL. Computational tool for the early screening of monoclonal antibodies for their viscosities. Mabs. 2016;8(1):43–48. doi:10.1080/19420862.2015.1099773. PMID: 26399600.
  • Neergaard MS, Kalonia DS, Parshad H, Nielsen AD, Møller EH, van de WM. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass – prediction of viscosity through protein–protein interaction measurements. Eur J Pharm Sci. 2013;49(3):400–10. doi:10.1016/j.ejps.2013.04.019. PMID: 23624326.
  • Wang S, Zhang N, Hu T, Dai W, Feng X, Zhang X, Qian F. Viscosity-lowering effect of amino acids and salts on highly concentrated solutions of two IgG1 monoclonal antibodies. Mol Pharmaceut. 2015;12(12):4478–87. doi:10.1021/acs.molpharmaceut.5b00643. PMID: 26528726.
  • Nichols P, Li L, Kumar S, Buck PM, Singh SK, Goswami S, Balthazor B, Conley TR, Sek D, Allen MJ. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. Mabs. 2015;7(1):212–30. doi:10.4161/19420862.2014.985504. PMID: 25559441.
  • Wang W. Advanced protein formulations. Protein Sci. 2015;24:1031–39. doi:10.1002/pro.2684. PMID: 25858529.
  • Warne NW. Development of high concentration protein biopharmaceuticals: the use of platform approaches in formulation development. Eur J Pharm Biopharm. 2011;78(2):208–12. doi:10.1016/j.ejpb.2011.03.004. PMID: 21406226.
  • Gupta P, Makowski EK, Kumar S, Zhang Y, Scheer JM, Tessier PM. Antibodies with weakly basic isoelectric points minimize trade-offs between formulation and physiological colloidal properties. Mol Pharmaceut. 2021;19(3):775–87. doi:10.1021/acs.molpharmaceut.1c00373.
  • Jäger S, Wagner TR, Rasche N, Kolmar H, Hecht S, Schröter C. Generation and biological evaluation of Fc antigen binding fragment-drug conjugates as a novel antibody-based format for targeted drug delivery. Bioconjugate Chem. 2021;32(8):1699–710. doi:10.1021/acs.bioconjchem.1c00240. PMID: 34185508.
  • Murer P, Neri D. Antibody-cytokine fusion proteins: a novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. New Biotechnol. 2019;52:42–53. doi:10.1016/j.nbt.2019.04.002. PMID: 30991144.
  • Egan TJ, Diem D, Weldon R, Neumann T, Meyer S, Urech DM. Novel multispecific heterodimeric antibody format allowing modular assembly of variable domain fragments. Mabs. 2017;9(1):68–84. doi:10.1080/19420862.2016.1248012. PMID: 27786600.
  • Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov. 2002;1(6):457–62. doi:10.1038/nrd818. PMID: 12119747.
  • Deehan M, Garcês S, Kramer D, Baker MP, Rat D, Roettger Y, Kromminga A. Managing unwanted immunogenicity of biologicals. Autoimmun Rev. 2015;14(7):569–74. doi:10.1016/j.autrev.2015.02.007. PMID: 25742758.
  • Johnson DE. Biotherapeutics: challenges and opportunities for predictive toxicology of monoclonal antibodies. Int J Mol Sci. 2018;19(11):3685. doi:10.3390/ijms19113685. PMID: 30469350.
  • Gorovits B, Clements-Egan A, Birchler M, Liang M, Myler H, Peng K, Purushothama S, Rajadhyaksha M, Salazar-Fontana L, Sung C, et al. Pre-existing antibody: biotherapeutic modality-based review. Aaps J. 2016;18(2):311–20. doi:10.1208/s12248-016-9878-1. PMID: 26821802.
  • Knezevic I, Griffiths E. WHO standards for biotherapeutics, including biosimilars: an example of the evaluation of complex biological products. Ann Ny Acad Sci. 2018;1407(1):5–16. doi:10.1111/nyas.13434. PMID: 28905423.
  • Mehta MU, Uppoor RS, Conner DP, Seo P, Vaidyanathan J, Volpe DA, Stier E, Chilukuri D, Dorantes A, Ghosh T, et al. Impact of the US FDA “biopharmaceutics classification system” (BCS) guidance on global drug development. Mol Pharmaceut. 2017;14(12):4334–38. doi:10.1021/acs.molpharmaceut.7b00687. PMID: 29076742.
  • Darrow JJ, Avorn J, Kesselheim AS. FDA approval and regulation of pharmaceuticals, 1983-2018. Jama. 2020;323(2):164–76. doi:10.1001/jama.2019.20288. PMID: 31935033.
  • Ishii-Watabe A, Shibata H, Nishimura K, Hosogi J, Aoyama M, Nishimiya K, Saito Y. Immunogenicity of therapeutic protein products: current considerations for anti-drug antibody assay in Japan. Bioanalysis. 2017;10(2):95–105. doi:10.4155/bio-2017-0186. PMID: 29243491.
  • Downing NS, Aminawung JA, Shah ND, Krumholz HM, Ross JS. Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012. Jama. 2014;311(4):368–77. doi:10.1001/jama.2013.282034. PMID: 24449315.
  • Dreher-Lesnick SM, Stibitz S, Carlson PE, Britton RA, Cani PD. U.S. regulatory considerations for development of live biotherapeutic products as drugs. Microbiol Spectr. 2017;5:5. doi:10.1128/microbiolspec.bad-0017-2017. PMID: 28975881.
  • Hung JJ, Dear BJ, Dinin AK, Borwankar AU, Mehta SK, Truskett TT, Johnston KP. Improving viscosity and stability of a highly concentrated monoclonal antibody solution with concentrated proline. Pharmaceut Res. 2018;35(7):133. doi:10.1007/s11095-018-2398-1. PMID: 29713822.
  • Rodrigues D, Tanenbaum LM, Thirumangalathu R, Somani S, Zhang K, Kumar V, Amin K, Thakkar SV. Product-specific impact of viscosity modulating formulation excipients during ultra-high concentration biotherapeutics drug product development. J Pharm Sci. 2021;110(3):1077–82. doi:10.1016/j.xphs.2020.12.016. PMID: 33340533.
  • Kumar S, Singh SK. Developability of biotherapeutics: computational approaches. 1st ed. Boca Raton (FL): CRC Press; 2015.
  • Ahmed L, Gupta P, Martin KP, Scheer JM, Nixon AE, Kumar S. Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. P Natl Acad Sci USA. 2021;118(37):e2020577118. doi:10.1073/pnas.2020577118. PMID: 34504010.
  • Prabakaran R, Rawat P, Kumar S, Gromiha MM. Evaluation of in silico tools for the prediction of protein and peptide aggregation on diverse datasets. Brief Bioinform. 2021;22(6): PMID: 34181000. doi:10.1093/bib/bbab240.
  • Liu Y, Tsang K, Mays M, Hansen G, Chiecko J, Crames M, Wei Y, Zhou W, Fredrick C, Hu J, et al. An adapted consensus protein design strategy for identifying globally optimal biotherapeutics. Mabs. 2022;14(1):2073632. doi:10.1080/19420862.2022.2073632. PMID: 35613320.
  • Lin J, Lee SL, Russell AM, Huang RF, Batt MA, Chang SS, Ferrante A, Verdino P, Henry KA. A structure-based engineering approach to abrogate pre-existing antibody binding to biotherapeutics. Plos One. 2021;16(7):e0254944. doi:10.1371/journal.pone.0254944. PMID: 34297759.
  • Narayanan H, Dingfelder F, Butté A, Lorenzen N, Sokolov M, Arosio P. Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol Sci. 2021;42(3):151–65. doi:10.1016/j.tips.2020.12.004. PMID: 33500170.
  • The Antibody Society. Therapeutic monoclonal antibodies approved or in review in the EU or US; 2022 [accessed 2022 Feb 9]. www.antibodysociety.org.
  • Clinical Trials. 2022 [accessed 2022 Feb 9]. https://clinicaltrials.gov/.
  • Lefranc MP. IMGT, the international ImMunoGeneTics information system. Cold Spring Harb Protoc. 2011;2011(6):db.top115. doi:10.1101/pdb.top115. PMID: 21632786.
  • Lefranc MP, Giudicelli V, Duroux P, Jabado-Michaloud J, Folch G, Aouinti S, Carillon E, Duvergey H, Houles A, Paysan-Lafosse T, et al. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 2015;43(D1):D413–22. doi:10.1093/nar/gku1056. PMID: 25378316.
  • Craic. Therapeutic antibody database; 2022 [accessed 2022 Feb 8]. https://tabs.craic.com.
  • Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 2013;41:W34–40. doi:10.1093/nar/gkt382. PMID: 23671333.
  • Molecular Operating Environment (MOE). Chemical computing group ULC; 2022 [accessed 2023 Feb 15]. https://www.chemcomp.com/.