6,960
Views
2
CrossRef citations to date
0
Altmetric
Report

Impact of IgG subclass on monoclonal antibody developability

, ORCID Icon, , & ORCID Icon
Article: 2191302 | Received 28 Dec 2022, Accepted 10 Mar 2023, Published online: 21 Mar 2023

References

  • Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. mAbs. 2022;14:2014296. doi:10.1080/19420862.2021.2014296. PMID: 35030985.
  • Delidakis G, Kim JE, George K, Georgiou G. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. Annu Rev Biomed Eng. 2022;24:249–12. doi:10.1146/annurev-bioeng-082721-024500. PMID: 35363537.
  • Hari SB, Lau H, Razinkov VI, Chen S, Latypov RF. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition. Biochemistry. 2010;49:9328–38. doi:10.1021/bi100841u. PMID: 20843079.
  • Ishikawa T, Ito T, Endo R, Nakagawa K, Sawa E, Wakamatsu K. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biol Pharm Bull. 2010;33:1413–17. doi:10.1248/bpb.33.1413. PMID: 20686240.
  • Skamris T, Tian X, Thorolfsson M, Karkov HS, Rasmussen HB, Langkilde AE, Vestergaard B. Monoclonal antibodies follow distinct aggregation pathways during production-relevant acidic incubation and neutralization. Pharm Res. 2016;33:716–28. doi:10.1007/s11095-015-1821-0. PMID: 26563206.
  • Saito S, Namisaki H, Hiraishi K, Takahashi N, Iida S. Engineering a human IgG2 antibody stable at low pH. Protein Sci. 2020;29:1186–95. doi:10.1002/pro.3852. PMID: 32142185.
  • Mazzer AR, Perraud X, Halley J, O’hara J, Bracewell DG. Protein a chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. J Chromatogr A. 2015;1415:83–90. PMID: 26346187. doi:10.1016/j.chroma.2015.08.068.
  • Jin W, Xing Z, Song Y, Huang C, Xu X, Ghose S, Li ZJ. Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. mAbs. 2019;11:1479–91. doi:10.1080/19420862.2019.1658493. PMID: 31441367.
  • Brezski RJ, Oberholtzer A, Strake B, Jordan RE. The in vitro resistance of IgG2 to proteolytic attack concurs with a comparative paucity of autoantibodies against peptide analogs of the IgG2 hinge. mAbs. 2011;3:558–67. doi:10.4161/mabs.3.6.18119. PMID: 22123056.
  • Suzuki S, Annaka H, Konno S, Kumagai I, Asano R. Engineering the hinge region of human IgG1 Fc-fused bispecific antibodies to improve fragmentation resistance. Sci Rep. 2018;8:17253. doi:10.1038/s41598-018-35489-y. PMID: 30467410.
  • Ito T, Tsumoto K. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Protein Sci. 2013;22:1542–51. doi:10.1002/pro.2340. PMID: 23963869.
  • Tian X, Langkilde AE, Thorolfsson M, Rasmussen HB, Vestergaard B. Small-angle x-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4. J Pharm Sci. 2014;103:1701–10. doi:10.1002/jps.23964. PMID: 24700358.
  • Alekseychyk L, Su C, Becker GW, Treuheit MJ, Razinkov VI., Razinkov VI. High-throughput screening and stability optimization of anti-streptavidin IgG1 and IgG2 formulations. J Biomol Screen. 2014;19:1290–301. PMID: 25023322. doi:10.1177/1087057114542431.
  • Neergaard MS, Nielsen AD, Parshad H, Van De Weert M. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. J Pharm Sci. 2014;103:115–27. doi:10.1002/jps.23788. PMID: 24282022.
  • Levy NE, Valente KN, Choe LH, Lee KH, Lenhoff AM. Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing. Biotechnol Bioeng. 2014;111:904–12. doi:10.1002/bit.25158. PMID: 24254318.
  • Tang Y, Cain P, Anguiano V, Shih JJ, Chai Q, Feng Y. Impact of IgG subclass on molecular properties of monoclonal antibodies. mAbs. 2021;13:1993768. doi:10.1080/19420862.2021.1993768. PMID: 34763607.
  • Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R, Rixon M, Schou O, Foley KP, Haugen H, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15:289–302. PMID: 11520463. doi:10.1016/s1074-7613(01)00183-2.
  • Angal S, King DJ, Bodmer MW, Turner A, Lawson AD, Roberts G, Pedley B, Adair JR. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol. 1993;30:105–08. doi:10.1016/0161-5890(93)90432-b. PMID: 8417368.
  • Bloom JW, Madanat MS, Marriott D, Wong T, Chan SY. Intrachain disulfide bond in the core hinge region of human IgG4. Protein science: a publication of the protein society. Protein Sci. 1997;6:407–15. PMID: 9041643. doi:10.1002/pro.5560060217.
  • Schuurman J, Perdok GJ, Gorter AD, Aalberse RC. The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol. 2001;38:1–8. doi:10.1016/s0161-5890(01)00050-5. PMID: 11483205.
  • Li X, Wang F, Li H, Richardson DD, Roush DJ. The measurement and control of high-risk host cell proteins for polysorbate degradation in biologics formulation. Antib Ther. 2022;5:42–54. doi:10.1093/abt/tbac002. PMID: 35155990.
  • Zhang S, Riccardi C, Kamen D, Reilly J, Mattila J, Bak H, Xiao H, Li N. Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharm Res. 2022;39:75–87. doi:10.1007/s11095-021-03160-3. PMID: 34981317.
  • Szkodny AC, Lee KH. Biopharmaceutical manufacturing: historical perspectives and future directions. Annual review of chemical and biomolecular engineering. Annu Rev Chem Biomol Eng. 2022;13:141–65. PMID: 35300518. doi:10.1146/annurev-chembioeng-092220-125832.
  • Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol. 2016;100:3451–61. doi:10.1007/s00253-016-7388-9. PMID: 26936774.
  • Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;109:169–90. doi:10.1016/j.xphs.2019.08.009. PMID: 31465737.
  • Ayyar BV, Arora S, Ravi SS. Optimizing antibody expression: the nuts and bolts. Meth (San Diego Calif). 2017;116:51–62. doi:10.1016/j.ymeth.2017.01.009. PMID: 28163103.
  • Fischer SK, Cheu M, Peng K, Lowe J, Araujo J, Murray E, McClintock D, Matthews J, Siguenza P, Song A. Specific immune response to phospholipase B-Like 2 protein, a host cell impurity in Lebrikizumab clinical material. Aaps J. 2017;19:254–63. doi:10.1208/s12248-016-9998-7. PMID: 27739010.
  • Gao SX, Zhang Y, Stansberry-Perkins K, Buko A, Bai S, Nguyen V, Brader ML. Fragmentation of a highly purified monoclonal antibody attributed to residual CHO cell protease activity. Biotechnol Bioeng. 2011;108:977–82. doi:10.1002/bit.22982. PMID: 21404269.
  • Chiu J, Valente KN, Levy NE, Min L, Lenhoff AM, Lee KH. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol Bioeng. 2017;114:1006–15. doi:10.1002/bit.26237. PMID: 27943242.
  • Hall T, Sandefur SL, Frye CC, Tuley TL, Huang L. Polysorbates 20 and 80 degradation by group XV lysosomal phospholipase A2 isomer X1 in monoclonal antibody formulations. J Pharm Sci. 2016;105:1633–42. doi:10.1016/j.xphs.2016.02.022. PMID: 27056628.
  • Plomp R, Ruhaak LR, Uh HW, Reiding KR, Selman M, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Wuhrer M. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci Rep. 2017;7:12325. doi:10.1038/s41598-017-12495-0. PMID: 28951559.
  • de Haan N, Reiding KR, Krištić J, Hipgrave Ederveen AL, Lauc G, Wuhrer M. The N-Glycosylation of Mouse Immunoglobulin G (IgG)-fragment crystallizable differs between IgG subclasses and strains. Front Immunol. 2017;8:608. PMID: 28620376. doi:10.3389/fimmu.2017.00608.
  • Lund J, Takahashi N, Nakagawa H, Goodall M, Bentley T, Hindley SA, Tyler R, Jefferis R. Control of IgG/Fc glycosylation: a comparison of oligosaccharides from chimeric human/mouse and mouse subclass immunoglobulin Gs. Mol Immunol. 1993;30:741–48. doi:10.1016/0161-5890(93)90145-2. PMID: 8502242.
  • Zhang Q, Joubert MK, Polozova A, De Guzman R, Lakamsani K, Kinderman F, Xiang D, Shami A, Miscalichi N, Flynn GC, et al. Glycan engineering reveals interrelated effects of terminal galactose and core fucose on antibody-dependent cell-mediated cytotoxicity. Biotechnol Prog. 2020;36:e3045. PMID: 32627435. doi:10.1002/btpr.3045.
  • Thomann M, Reckermann K, Reusch D, Prasser J, Tejada ML. Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol Immunol. 2016;73:69–75. PMID: 27058641. doi:10.1016/j.molimm.2016.03.002.
  • Aoyama M, Hashii N, Tsukimura W, Osumi K, Harazono A, Tada M, Kiyoshi M, Matsuda A, Ishii-Watabe A. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. mAbs. 2019;11:826–36. doi:10.1080/19420862.2019.1608143. PMID: 30990348.
  • Chow CK, Allan BW, Chai Q, Atwell S, Lu J. Therapeutic antibody engineering to improve viscosity and phase separation guided by crystal structure. Mol Pharm. 2016;13:915–23. doi:10.1021/acs.molpharmaceut.5b00817. PMID: 26849155.
  • Mason BD, Zhang L, Remmele RL Jr., Zhang J. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation. J Pharm Sci. 2011;100:4587–96. doi:10.1002/jps.22650. PMID: 21638285.
  • Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci Adv. 2020;6:eabb0372. PMID: 32923611. doi:10.1126/sciadv.abb0372.
  • Garber E, Demarest SJ. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355:751–57. doi:10.1016/j.bbrc.2007.02.042. PMID: 17321501.
  • Heads JT, Adams R, D’hooghe LE, Page MJ, Humphreys DP, Popplewell AG, Lawson AD, Henry AJ. Relative stabilities of IgG1 and IgG4 Fab domains: influence of the light-heavy interchain disulfide bond architecture. Protein Sci. 2012;21:1315–22. doi:10.1002/pro.2118. PMID: 22761163.
  • Franey H, Brych SR, Kolvenbach CG, Rajan RS. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Sci. 2010;19:1601–15. doi:10.1002/pro.434. PMID: 20556807.
  • Schön A, Freire E. Reversibility and irreversibility in the temperature denaturation of monoclonal antibodies. Anal Biochem. 2021;626:114240. PMID: 33964250. doi:10.1016/j.ab.2021.114240.
  • Vlasak J, Ionescu R. Fragmentation of monoclonal antibodies. mAbs. 2011;3:253–63. doi:10.4161/mabs.3.3.15608. PMID: 21487244.
  • Valliere-Douglass J, Jones L, Shpektor D, Kodama P, Wallace A, Balland A, Bailey R, Zhang Y. Separation and characterization of an IgG2 antibody containing a cyclic imide in CDR1 of light chain by hydrophobic interaction chromatography and mass spectrometry. Anal Chem. 2008;80:3168–74. doi:10.1021/ac702245c. PMID: 18355059.
  • Nowak C, Kc J, Md S, Katiyar A, Bhat R, Sun J, Ponniah G, Neill A, Mason B, Beck A, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. mAbs. 2017;9:1217–30. PMID: 28853987. doi:10.1080/19420862.2017.1368602.
  • Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol. 2008;9:468–81. doi:10.2174/138920108786786402. PMID: 19075686.
  • Lu X, Machiesky LA, De Mel N, Du Q, Xu W, Washabaugh M, Jiang XR, Wang J. Characterization of IgG1 Fc deamidation at asparagine 325 and its impact on antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. Sci Rep. 2020;10:383. doi:10.1038/s41598-019-57184-2. PMID: 31941950.
  • Yan Q, Huang M, Lewis MJ, Hu P. Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. mAbs. 2018;10:901–12. doi:10.1080/19420862.2018.1478646. PMID: 29958069.
  • Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol. 2000;37:697–706. doi:10.1016/s0161-5890(00)00105-x. PMID: 11275255.
  • Borrok MJ, Mody N, Lu X, Kuhn ML, Wu H, Dall’acqua WF, Tsui P. An “Fc-Silenced” IgG1 format with extended half-life designed for improved stability. J Pharm Sci. 2017;106:1008–17. doi:10.1016/j.xphs.2016.12.023. PMID: 28057542.
  • Tam SH, McCarthy SG, Armstrong AA, Somani S, Wu SJ, Liu X, Gervais A, Ernst R, Saro D, Decker R, et al. Functional. Biophysical, and structural characterization of human IgG1 and IgG4 Fc variants with ablated immune functionality. Antibodies (Basel, Switzerland), 2017; Vol. 6. 10.3390/antib6030012. PMID: 31548527
  • Huang L, Wang N, Mitchell CE, Brownlee T, Maple SR, De Felippis MR. A novel sample preparation for shotgun proteomics characterization of HCPs in antibodies. Anal Chem. 2017;89:5436–44. doi:10.1021/acs.analchem.7b00304. PMID: 28414239.