4,574
Views
1
CrossRef citations to date
0
Altmetric
Review

Mechanistic PK/PD modeling to address early-stage biotherapeutic dosing feasibility questions

, , , &
Article: 2192251 | Received 25 Nov 2022, Accepted 14 Mar 2023, Published online: 23 Mar 2023

References

  • Wolf Pérez A-M, Lorenzen N, Vendruscolo M, Sormanni P. Assessment of therapeutic antibody developability by combinations of in vitro and in silico methods. Methods Mol Biol. 2022;2313:57–11.
  • Saxena V, Panicucci R, Joshi Y, Garad S. Developability assessment in pharmaceutical industry: an integrated group approach for selecting developable candidates. J Pharm Sci. 2009;98(6):1962–79. doi:10.1002/jps.21592.
  • Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci. 2015;104(6):1885–98. doi:10.1002/jps.24430.
  • Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs. 2019;11(2):239–64. doi:10.1080/19420862.2018.1553476.
  • Negron C, Fang J, McPherson MJ, Wb S Jr, McCluskey AJ. Separating clinical antibodies from repertoire antibodies, a path to in silico developability assessment. MAbs. 2022;14(1):2080628. doi:10.1080/19420862.2022.2080628.
  • Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, et al. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs. 2022;14(1):2020082. doi:10.1080/19420862.2021.2020082.
  • Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs. 2011;3(1):61–66. doi:10.4161/mabs.3.1.13799.
  • Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu C-P, Stouch BJ, Hurh E, Gibbs MA. Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet. 2011;50(2):131–42. doi:10.2165/11537430-000000000-00000.
  • Betts A, Keunecke A, van Steeg Tj, van der Graaf Ph, Avery LB, Jones H, Berkhout J, van Steeg TJ, van der Graaf PH. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: a comparison between human, cynomolgus monkey and hFcrn Tg32 transgenic mouse using a population-modeling approach. MAbs. 2018;10(5):751–64. doi:10.1080/19420862.2018.1462429.
  • Agoram BM, Martin SW, van der Graaf PH. The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov Today. 2007;12(23–24):1018–24. doi:10.1016/j.drudis.2007.10.002.
  • Danhof M, de Jongh J, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007;47:357–400. doi:10.1146/annurev.pharmtox.47.120505.105154.
  • Davda JP, Hansen RJ. Properties of a general PK/PD model of antibody-ligand interactions for therapeutic antibodies that bind to soluble endogenous targets. MAbs. 2010;2(5):576–88. doi:10.4161/mabs.2.5.12833.
  • Chen J, Eshghi ST, Bova GS, Li QK, Li X, Zhang H. Epithelium percentage estimation facilitates epithelial quantitative protein measurement in tissue specimens. Clin Proteomics. 2013;10(1). Internet. doi:10.1186/1559-0275-10-18.
  • Munz M, Fellinger K, Hofmann T, Schmitt B, Gires O. Glycosylation is crucial for stability of tumour and cancer stem cell antigen EpCAM. Front Biosci. 2008;13(13):5195–201. doi:10.2741/3075.
  • Liu H, Rhodes M, Wiest DL, Vignali DA. On the dynamics of TCR: cD3 complex cell surface expression and downmodulation. Immunity. 2000;13(5):665–75. doi:10.1016/S1074-7613(00)00066-2.
  • Hu L, Hansen RJ. Issues, challenges, and opportunities in model-based drug development for monoclonal antibodies. J Pharm Sci. 2013;102(9):2898–908. doi:10.1002/jps.23504.
  • Zou H, Banerjee P, Leung SSY, Yan X. Application of pharmacokinetic-pharmacodynamic modeling in drug delivery: development and challenges. Front Pharmacol. 2020;11:997. doi:10.3389/fphar.2020.00997.
  • Danhof M, de Lange Ecm, Della Pasqua OE, Ploeger BA, Voskuyl RA, Delange E. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci. 2008;29(4):186–91. doi:10.1016/j.tips.2008.01.007.
  • Ait-Oudhia S, Ovacik MA, Mager DE. Systems pharmacology and enhanced pharmacodynamic models for understanding antibody-based drug action and toxicity. MAbs. 2017;9(1):15–28. doi:10.1080/19420862.2016.1238995.
  • Marcantonio DH, Matteson A, Presler M, Burke JM, Hagen DR, Hua F, Apgar JF. Early feasibility assessment: a method for accurately predicting biotherapeutic dosing to inform early drug discovery decisions. Front Pharmacol. 2022:13. Internet. doi:10.3389/fphar.2022.864768.
  • Tiwari A, Kasaian M, Heatherington AC, Jones HM, Hua F. A mechanistic PK/PD model for two anti-IL13 antibodies explains the difference in total IL-13 accumulation observed in clinical studies. MAbs. 2016;8(5):983–90. doi:10.1080/19420862.2016.1172151.
  • Dwivedi G, Fitz L, Hegen M, Martin SW, Harrold J, Heatherington A, Li C. A multiscale model of interleukin-6-mediated immune regulation in Crohn’s disease and its application in drug discovery and development. CPT: Pharmacometrics & Systems Pharmacology. 2014;3(1):e89. doi:10.1038/psp.2013.64.
  • Kondic A, Bottino D, Harrold J, Kearns JD, Musante CJ, Odinecs A, Ramanujan S, Selimkhanov J, Schoeberl B. Navigating between right, wrong, and relevant: the use of mathematical modeling in preclinical decision making. Front Pharmacol. 2022;13:860881. doi:10.3389/fphar.2022.860881.
  • Oldenborg P-A. CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease. ISRN Hematol. 2013;2013:614619. doi:10.1155/2013/614619.
  • Latham P, Kaltenbrunner O, Curling J, Levine H, Rathore A. Costing issues in the production of biopharmaceuticals. BioPharm Int [Internet]. 2004 [[accessed 2022 Nov 20];17(2): https://www.biopharminternational.com/view/costing-issues-production-biopharmaceuticals.
  • Contract Development and Manufacturing Costs During Clinical Development of a New Drug. 2013. Applied Clinical Trials Online [Internet]. [accessed 2022 Nov 22]. https://www.appliedclinicaltrialsonline.com/view/contract-development-and-manufacturing-costs-during-clinical-development-new-drug
  • Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71. doi:10.3109/03014460.2013.807878.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):1–14. doi:10.1371/journal.pbio.1002533.
  • Trepel F. Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr. 1974;52(11):511–15. doi:10.1007/BF01468720.
  • Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW, Pereira DS. Development of AO-176, a next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 2020;19(3):835–46. doi:10.1158/1535-7163.MCT-19-1079.
  • Martinez-Torres A-C, Quiney C, Attout T, Boullet H, Herbi L, Vela L, Barbier S, Chateau D, Chapiro E, Nguyen-Khac F, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med. 2015;12(3):e1001796. doi:10.1371/journal.pmed.1001796.
  • Willingham SB, Volkmer J-P, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012;109(17):6662–67. doi:10.1073/pnas.1121623109.
  • Del Monte U. Does the cell number 10(9) still really fit one gram of tumor tissue? Cell Cycle. 2009;8(3):505–06. doi:10.4161/cc.8.3.7608.
  • Brooke G, Holbrook JD, Brown MH, Barclay AN. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J Immunol. 2004;173(4):2562–70. doi:10.4049/jimmunol.173.4.2562.
  • Jalil AR, Andrechak JC, Discher DE. Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPα structure-function. Antib Ther. 2020;3(2):80–94. doi:10.1093/abt/tbaa006.
  • Leclair P, Liu C-C, Monajemi M, Reid GS, Sly LM, Lim CJ. CD47-ligation induced cell death in T-acute lymphoblastic leukemia. Cell Death Dis. 2018;9(5):544. doi:10.1038/s41419-018-0601-2.
  • Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, Pereira DS. Novel SIRPα antibodies that induce single-agent phagocytosis of tumor cells while preserving T cells. J Immunol. 2021;206(4):712–21. doi:10.4049/jimmunol.2001019.
  • Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, Colevas AD, O’rourke T, Narayanan S, Papadopoulos K, et al. First-in-human, first-in-class phase i trial of the anti-CD47 antibody Hu5F9-G4 in patients with Advanced Cancers. J Clin Oncol. 2019;37(12):946–53. doi:10.1200/JCO.18.02018.
  • Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, Rautenberg B, Atanackovic D, Kratzer A, Rottman JB, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology. 2018;Internet. doi:10.1080/2162402X.2018.1450710.
  • Brischwein K, Schlereth B, Guller B, Steiger C, Wolf A, Lutterbuese R, Offner S, Locher M, Urbig T, Raum T, et al. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol. 2006;43(8):1129–43. doi:10.1016/j.molimm.2005.07.034.
  • García-Martínez E, Gil GL, Benito AC, González-Billalabeitia E, Conesa MAV, García García T, García-Garre E, Vicente V, Ayala de la Peña F. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014;16(6):488. doi:10.1186/s13058-014-0488-5.
  • Thibault G, Bardos P. Compared TCR and CD3 epsilon expression on alpha beta and gamma delta T cells. Evidence for the association of two TCR heterodimers with three CD3 epsilon chains in This information is current as the TCR/CD3 complex. J Immunol. 1995;154:3814–20. doi:10.4049/jimmunol.154.8.3814.
  • Mahadeva S, Wyatt JI, Howdle PD. Is a raised intraepithelial lymphocyte count with normal duodenal villous architecture clinically relevant? J Clin Pathol. 2002;55(6):424–28. doi:10.1136/jcp.55.6.424.
  • Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, Imai M, Sakemura R, Goto T, Hanajiri R, Imahashi N, et al. Target antigen density governs the efficacy of anti–CD20-CD28-CD3 ζ chimeric antigen receptor–modified effector CD8+ T Cells. Journal of Immunology. 2015;194(3):911–20. doi:10.4049/jimmunol.1402346.
  • Ellerman D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods. 2019;154:102–17. doi:10.1016/j.ymeth.2018.10.026.
  • Tiwari A, Abraham AK, Harrold JM, Zutshi A, Singh P. Optimal affinity of a monoclonal antibody: guiding principles using mechanistic modeling. Aaps J. 2017;19(2):510–19. doi:10.1208/s12248-016-0004-1.
  • Singh AP, Krzyzanski W, Martin SW, Weber G, Betts A, Ahmad A, Abraham A, Zutshi A, Lin J, Singh P. Quantitative prediction of human pharmacokinetics for mAbs exhibiting target-mediated disposition. Aaps J. 2015;17(2):389–99. doi:10.1208/s12248-014-9690-8.
  • Kapitanov GI, Chabot JR, Narula J, Roy M, Neubert H, Palandra J, Farrokhi V, Johnson JS, Webster R, Jones HM. A mechanistic site-of-action model: a tool for informing right target, right compound, and right dose for therapeutic antagonistic antibody programs. Frontiers in Bioinformatics. 2021;1:1. Internet. doi:10.3389/fbinf.2021.731340.
  • Yu J, Karcher H, Feire AL, Lowe PJ. From target selection to the minimum acceptable biological effect level for human study: use of mechanism-based PK/PD modeling to design safe and efficacious biologics. Aaps J. 2011;13(2):169–78. doi:10.1208/s12248-011-9256-y.
  • Lemaire V, Bassen D, Reed M, Song R, Khalili S, Lien YTK, Huang L, Singh AP, Stamatelos S, Bottino D, et al. From cold to hot: changing perceptions and future opportunities for quantitative systems pharmacology modeling in cancer immunotherapy. Clin Pharmacol Ther [Internet]. 2022. doi:10.1002/cpt.2770.
  • Mizrahi O, Ish Shalom E, Baniyash M, Klieger Y. Quantitative flow cytometry: concerns and recommendations in clinic and research. Cytometry B Clin Cytom. 2018;94(2):211–18. doi:10.1002/cyto.b.21515.
  • Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA. Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res. 2009;8(2):787–97. doi:10.1021/pr800538n.
  • Cid-Barrio L, Calderón-Celis F, Abásolo-Linares P, Fernández-Sánchez ML, Costa-Fernández JM, Encinar JR, Sanz-Medel A. Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. Trends Analyt Chem. 2018;104:148–59. doi:10.1016/j.trac.2017.09.024.