2,852
Views
0
CrossRef citations to date
0
Altmetric
Report

Ranking mAb–excipient interactions in biologics formulations by NMR spectroscopy and computational approaches

, , , , , , , , , , & show all
Article: 2212416 | Received 04 Jan 2023, Accepted 05 May 2023, Published online: 22 May 2023

References

  • Rosenberg AS. Effects of protein aggregates: an immunologic perspective. Aaps J. 2006;8(3):E501–13. doi:10.1208/aapsj080359.
  • Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, Topp EM. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105(2):417–30. doi:10.1016/j.xphs.2015.11.002.
  • Parkins DA, Lashmar UT. The formulation of biopharmaceutical products. Pharm Sci Technolo Today. 2000;3(4):129–37. doi:10.1016/S1461-5347(00)00248-0.
  • Akers MJ. Excipient-drug interactions in parenteral formulations. J Pharm Sci. 2002;91(11):2283–300. doi:10.1002/jps.10154.
  • Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein–excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev. 2011;63(13):1118–59. doi:10.1016/j.addr.2011.07.006.
  • Stoll VS, Blanchard JS. [4] buffers: principles and practice. In Deutscher MP, ed. Methods Enzymol: Academic Press; 1990. p. pp. 24–38.
  • Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12(5):505–23. doi:10.1080/10837450701481157.
  • Chang LL, Pikal MJ. Mechanisms of protein stabilization in the solid state. J Pharm Sci. 2009;98(9):2886–908. doi:10.1002/jps.21825.
  • Kumar R. Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys. 2009;491(1–2):1–6. doi:10.1016/j.abb.2009.09.007.
  • Arakawa T, Tsumoto K, Kita Y, Chang B, Ejima D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids. 2007;33(4):587–605. doi:10.1007/s00726-007-0506-3.
  • Kerwin B. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35. doi:10.1002/jps.21190.
  • Dave VS, Haware RV, Sangave NA, Sayles M, Popielarczyk M. Drug-excipient compatibility studies in formulation development: current trends and techniques. AAPS FDD Sec Newslett. 2015;9–15.
  • Patel PA, Ahir K, Patel VB, Manani L, Patel C. Drug-excipient compatibility studies: first step for dosage form development. J Pharm Innov. 2015;4:14–20.
  • Bee JS, Chiu D, Sawicki S, Stevenson JL, Chatterjee K, Freund E, Carpenter JF, Randolph TW. Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies. J Pharm Sci. 2009;98(9):3218–38. doi:10.1002/jps.21768.
  • Kopp MRG, Perez AMW, Zucca MV, Palmiero UC, Friedrichsen B, Lorenzen N, Arosio P. An accelerated surface-mediated stress assay of antibody instability for developability studies. MAbs. 2020;12(1):12. doi:10.1080/19420862.2020.1815995.
  • Roughton BC, Iyer LK, Bertelsen E, Topp EM, Camarda KV. Protein aggregation and lyophilization: protein structural descriptors as predictors of aggregation propensity. Comput Chem Eng. 2013;58:369–77. doi:10.1016/j.compchemeng.2013.07.008.
  • Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1–2):1–60. doi:10.1016/S0378-5173(00)00423-3.
  • Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N. Instability of therapeutic proteins - an overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. Int J Biol Macromol. 2021;167:309–25. doi:10.1016/j.ijbiomac.2020.11.188.
  • Kim NA, Thapa R, Jeong SH. Preferential exclusion mechanism by carbohydrates on protein stabilization using thermodynamic evaluation. Int J Biol Macromol. 2018;109:311–22. doi:10.1016/j.ijbiomac.2017.12.089.
  • Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF. Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev. 2001;46(1–3):307–26. doi:10.1016/s0169-409x(00)00144-7.
  • Avanti C, Saluja V, van Streun EL, Frijlink HW, Hinrichs WL, Permyakov EA. Stability of lysozyme in aqueous extremolyte solutions during heat shock and accelerated thermal conditions. PLos One. 2014;9(1):e86244. doi:10.1371/journal.pone.0086244.
  • Souillac PO, Middaugh CR, Rytting JH. Investigation of protein/carbohydrate interactions in the dried state. 2. Diffuse reflectance FTIR studies. Int J Pharm. 2002;235(1–2):207–18. doi:10.1016/s0378-5173(01)00987-5.
  • Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123(25):6108–17. doi:10.1021/ja0100120.
  • Kemper S, Patel MK, Errey JC, Davis BG, Jones JA, Claridge TDW. Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments. J Magn Reson. 2010;203(1):1–10. doi:10.1016/j.jmr.2009.11.015.
  • Joshi S, Maharana C, Rathore AS. An application of nano differential scanning fluorimetry for higher order structure assessment between mAb originator and biosimilars: trastuzumab and rituximab as case studies. J Pharm Biomed Anal. 2020;186:113270. doi:10.1016/j.jpba.2020.113270.
  • Svilenov HL, Kulakova A, Zalar M, Golovanov AP, Harris P, Winter G. Orthogonal techniques to study the effect of pH, sucrose, and arginine salts on monoclonal antibody physical stability and aggregation during long-term storage. J Pharm Sci. 2020;109(1):584–94. doi:10.1016/j.xphs.2019.10.065.
  • Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, et al. Predicting antibody developability profiles through early stage discovery screening. MAbs. 2020;12(1):1743053. doi:10.1080/19420862.2020.1743053.
  • Angulo J, Enríquez-Navas PM, Nieto PM. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates. Chemistry. 2010;16(26):7803–12. doi:10.1002/chem.200903528.
  • Goel H, Hazel A, Ustach VD, Jo S, Yu W, MacKerell AD. Rapid and accurate estimation of protein–ligand relative binding affinities using site-identification by ligand competitive saturation. Chem Sci. 2021;12(25):8844–58. doi:10.1039/D1SC01781K.
  • Viegas A, Manso J, Nobrega FL, Cabrita EJ. Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J Chem Educ. 2011;88(7):990–94. doi:10.1021/ed101169t.
  • Buchanan CJ, Gaunt B, Harrison PJ, Yang Y, Liu J, Khan A, Giltrap AM, Le Bas A, Ward PN, Gupta K, et al. Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science. 2022;377(6604):eabm3125. doi:10.1126/science.abm3125.
  • Svilenov H, Kopp K, Golovanov A, Winter G, Zalard M. Insights into the stabilization of interferon alpha by two surfactants revealed by STD-NMR spectroscopy. J Pharm Sci. 2022:1–7. doi:10.1016/j.xphs.2022.10.013.
  • Zalar M, Svilenov H, Golovanova A. Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. Eur J Pharm Biopharm. 2020;151:127–36. doi:10.1016/j.ejpb.2020.04.002.
  • Molecular Operating Environment (MOE). 2020. 09. Chemical computing group ULC, 1010 Sherbrooke St West, suite #910. Montreal, QC, Canada H3A 2R7; 2022. http://www.chemcomp.com
  • Case DA, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR, Cerutti DS, Cheatham TE III, Cisneros GA, Cruzeiro VWD, Darden TA, Duke RE, Giambasu G, Gilson MK, Gohlke H, Goetz AW, Harris R, Izadi S, Izmailov SA, Kasavajhala K, Kaymak MC, King E, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Machado M, Man V, Manathunga M, Merz KM, Miao Y, Mikhailovskii O, Monard G, Nguyen H, O’Hearn KA, Onufriev A, Pan F, Pantano S, Qi R, Rahnamoun A, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shajan A, Shen J, Simmerling CL, Skrynnikov NR, Smith J, Swails J, Walker RC, Wang J, Wang J, Wei H, Wolf RM, Wu X, Xiong Y, Xue Y, York DM, Zhao S, and Kollman PA. Amber 2022. San Francisco: University of California; 2022.
  • Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153(4):044130. doi:10.1063/5.0014475.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1). 33-8. doi:10.1016/0263-7855(96)00018-5.
  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi:10.1016/j.softx.2015.06.001.
  • Somani S, Jo S, Thirumangalathu R, Rodrigues D, Tanenbaum LM, Amin K, MacKerell AD Jr., Thakkar SV. Toward biotherapeutics formulation composition engineering using site-identification by ligand competitive saturation (SILCS). J Pharm Sci. 2021;110:1103–10. doi:10.1016/j.xphs.2020.10.051.
  • Raman EP, Yu W, Guvench O, MacKerell AD. Reproducing crystal binding modes of ligand functional groups using site-identification by ligand competitive saturation (SILCS) simulations. J Chem Inf Model. 2011;51:877–96. doi:10.1021/ci100462t.
  • Raman EP, Yu W, Lakkaraju SK, MacKerell AD Jr. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. J Chem Inf Model. 2013;53:3384–98. doi:10.1021/ci4005628.
  • Ustach VD, Lakkaraju SK, Jo S, Yu W, Jiang W, MacKerell AD. Optimization and evaluation of site-identification by ligand competitive saturation (SILCS) as a tool for target-based ligand optimization. J Chem Inf Model. 2019;59:3018–35. doi:10.1021/acs.jcim.9b00210.
  • Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput. 2012;8:3257–73. doi:10.1021/ct300400x.
  • Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD. Charmm36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71–73. doi:10.1038/nmeth.4067.
  • Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31:671–90. doi:10.1002/jcc.21367.
  • Durell SR, Brooks BR, Ben-Naim A. Solvent-induced forces between two hydrophilic groups. J Phys Chem. 1994;98:2198–202.
  • Wu D, Minton AP. Quantitative characterization of the interaction between sucrose and native proteins via static light scattering. J Phys Chem B. 2013;117:111–17. doi:10.1021/jp308880v.
  • Holloway L, Roche A, Marzouk S, Uddin S, Ke P, Ekizoglou S, Curtis R. Determination of protein-protein interactions at high co-solvent concentrations using static and dynamic light scattering. J Pharm Sci. 2020;109:2699–709. doi:10.1016/j.xphs.2020.05.023.