7,633
Views
9
CrossRef citations to date
0
Altmetric
Review

Evolution of phage display libraries for therapeutic antibody discovery

Article: 2213793 | Received 28 Nov 2022, Accepted 10 May 2023, Published online: 24 May 2023

References

  • Zhu Y, Wang SS, Zhou ZS, Ho M. The emergence of AntibodyPlus: the future trend of antibody-based therapeutics. Antib Ther. 2022;5:280–17. PMID: 36299417. doi:10.1093/abt/tbac024
  • Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1. PMID: 31894001. doi:10.1186/s12929-019-0592-z
  • Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018;9:86–120. PMID: 28822103. doi:10.1007/s13238-017-0457-8
  • Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fuhner V, Kuhn P, et al. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Front Cell Infect Microbiol. 2021;11:697876. PMID: 34307196. doi:10.3389/fcimb.2021.697876.
  • Nagano K, Tsutsumi Y. Phage display technology as a powerful platform for antibody drug discovery. Viruses. 2021;13(2):178. PMID: 33504115. doi:10.3390/v13020178.
  • Zhang Y, Su J, Wu DH. Chaptor 10. Physiology and pathology of multidrug-resistant bacteria: antibodies- and vaccines-based pathogen-specific targeting. In: Nima Rezaei, editor. Physiology and pathology of immunology. chaptor 10. physiology and pathology of multidrug-resistant bacteria: antibodies- and vaccines-based pathogen-specific Targeting. London, United Kingdom: Intech Open; 2017. p. 34.
  • Parsons HL, Earnshaw JC, Wilton J, Johnson KS, Schueler PA, Mahoney W, McCafferty J. Directing phage selections towards specific epitopes. Protein Eng. 1996;9(11):1043–49. PMID: 8961357. doi:10.1093/protein/9.11.1043.
  • Chen L, Zhu C, Guo H, Li R, Zhang L, Xing Z, Song Y, Zhang Z, Wang F, Liu X, et al. Epitope-directed antibody selection by site-specific photocrosslinking. Sci Adv. 2020;6(14):eaaz7825. PMID: 32270046. doi:10.1126/sciadv.aaz7825.
  • Bonvin P, Venet S, Fontaine G, Ravn U, Gueneau F, Kosco-Vilbois M, Proudfoot AE, Fischer N. De Novo isolation of antibodies with Ph-dependent binding properties. MAbs. 2015;7:294–302. PMID: 25608219. doi:10.1080/19420862.2015.1006993
  • Murtaugh ML, Fanning SW, Sharma TM, Terry AM, Horn JR. A combinatorial histidine scanning library approach to engineer highly Ph-dependent protein switches. Protein Sci. 2011;20:1619–31. PMID: 21766385. doi:10.1002/pro.696
  • Poul MA, Becerril B, Nielsen UB, Morisson P, Marks JD. Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol. 2000;301:1149–61. PMID: 10966812. doi:10.1006/jmbi.2000.4026
  • Becerril B, Poul MA, Marks JD. Toward selection of internalizing antibodies from phage libraries. Biochem Biophys Res Commun. 1999;255:386–93. PMID: 10049718. doi:10.1006/bbrc.1999.0177
  • Janda KD, Lo CH, Li T, Barbas CF 3rd, Wirsching P, Lerner RA. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc Natl Acad Sci U S A. 1994;91:2532–36. PMID: 8146149. doi:10.1073/pnas.91.7.2532
  • Tung CP, Chen IC, Yu CM, Peng HP, Jian JW, Ma SH, Lee YC, Jan JT, Yang AS. Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries. null. 2015;5:15053. PMID: 26456860. doi:10.1038/srep15053
  • Liu Q, Garg P, Hasdemir B, Wang L, Tuscano E, Sever E, Keane E, Hernandez AGL, Yuan TZ, Kwan E, et al. Functional GLP-1R antibodies identified from a synthetic GPCR-focused library demonstrate potent blood glucose control. MAbs. 2021;13:1893425. PMID: 33706686. doi:10.1080/19420862.2021.1893425.
  • Dominik PK, Borowska MT, Dalmas O, Kim SS, Perozo E, Keenan RJ, Kossiakoff AA. Conformational chaperones for structural studies of membrane proteins using antibody phage display with nanodiscs. Structure. 2016;24:300–09. PMID: 26749445. doi:10.1016/j.str.2015.11.014
  • Qiang M, Dong X, Zha Z, Zuo XK, Song XL, Zhao L, Yuan C, Huang C, Tao P, Hu Q, et al. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc Natl Acad Sci U S A. 2018;115:E7469–77. PMID: 30042215. doi:10.1073/pnas.1807233115.
  • Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J, Hatcher JP, Huang L, Taddese B, Thornton P, et al. Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain. 2019;160(9):1989–2003. PMID: 31045747. doi:10.1097/j.pain.0000000000001587.
  • Gray AC, Bradbury A, Dubel S, Knappik A, Pluckthun A, Borrebaeck CAK. Reproducibility: bypass animals for antibody production. Nature. 2020;581:262. PMID: 32415238. doi:10.1038/d41586-020-01474-7
  • Gorovits B, Hays A, Jani D, Jones C, King C, Lundequist A, Mora J, Partridge M, Pathania D, Ramaswamy SS, et al. AAPS perspective on the EURL recommendation on the use of non-animal-derived antibodies. Aaps J. 2021;23(2):34. PMID: 33649990. doi:10.1208/s12248-021-00567-z.
  • Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol. 2020;11:1986. PMID: 32983137. doi:10.3389/fimmu.2020.01986
  • Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem. 2021;403(5–6):455–77. PMID: 33759431. doi:10.1515/hsz-2020-0377.
  • Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8:1177–94. PMID: 27416017. doi:10.1080/19420862.2016.1212149
  • Kang AS, Barbas CF, Janda KD, Benkovic SJ, Lerner RA. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc Natl Acad Sci U S A. 1991;88:4363–66. PMID: 1903540. doi:10.1073/pnas.88.10.4363
  • Sidhu SS, Lowman HB, Cunningham BC, Wells JA. Phage display for selection of novel binding peptides. Methods Enzymol. 2000;328:333–63. PMID: 11075354. doi:10.1016/s0076-6879(00)28406-1
  • Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J Mol Biol. 1992;226(3):889–96. PMID: 1507232. doi:10.1016/0022-2836(92)90639-2.
  • Schutte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T, et al. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLos One. 2009;4(8):e6625. PMID: 19675673. doi:10.1371/journal.pone.0006625.
  • Zeng X, Li L, Lin J, Li X, Liu B, Kong Y, Zeng S, Du J, Xiao H, Zhang T, et al. Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy. Antib Ther. 2020;3(2):95–100. PMID: 33912790. doi:10.1093/abt/tbaa008.
  • Eisenhardt SU, Schwarz M, Bassler N, Peter K. Subtractive single-chain antibody (scFv) phage-display: tailoring phage-display for high specificity against function-specific conformations of cell membrane molecules. Nat Protoc. 2007;2(12):3063–73. PMID: 18079705. doi:10.1038/nprot.2007.455.
  • Ditzel HJ, Binley JM, Moore JP, Sodroski J, Sullivan N, Sawyer LS, Hendry RM, Yang WP, Barbas CF 3rd, Burton DR, et al. Neutralizing recombinant human antibodies to a conformational V2- and CD4-binding site-sensitive epitope of HIV-1 gp120 isolated by using an epitope-masking procedure. J Immunol. 1995;154(2):893–906. PMID: 7529290. https://www.ncbi.nlm.nih.gov/pubmed/7529290.
  • Jones ML, Alfaleh MA, Kumble S, Zhang S, Osborne GW, Yeh M, Arora N, Hou JJ, Howard CB, Chin DY, et al. Targeting membrane proteins for antibody discovery using phage display. null. 2016;6(1):26240. PMID: 27189586. doi:10.1038/srep26240.
  • Dominik PK, Kossiakoff AA. Phage display selections for affinity reagents to membrane proteins in nanodiscs. Methods Enzymol. 2015;557:219–45. PMID: 25950967. doi:10.1016/bs.mie.2014.12.032
  • Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for selecting membrane protein-specific antibodies using phage display with cell-based panning. Antibodies (Basel). 2017;6(3):10. PMID: 31548525. doi:10.3390/antib6030010.
  • Zhang H, Wilson IA, Lerner RA. Selection of antibodies that regulate phenotype from intracellular combinatorial antibody libraries. Proc Natl Acad Sci U S A. 2012;109(39):15728–33. PMID: 23019357. doi:10.1073/pnas.1214275109.
  • Merkouris S, Barde YA, Binley KE, Allen ND, Stepanov AV, Wu NC, Grande G, Lin CW, Li M, Nan X, et al. Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library. Proc Natl Acad Sci U S A. 2018;115(30):E7023–32. PMID: 29987039. doi:10.1073/pnas.1806660115.
  • Ledsgaard L, Ljungars A, Rimbault C, Sorensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today. 2022;27(8):2151–69. PMID: 35550436. doi:10.1016/j.drudis.2022.05.002.
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–17. PMID: 4001944. doi:10.1126/science.4001944
  • Smith GP, Petrenko VA. Phage Display. Chem Rev. 1997;97:391–410. PMID: 11848876. doi:10.1021/cr960065d
  • Breitling F, Dubel S, Seehaus T, Klewinghaus I, Little M. A surface expression vector for antibody screening. Gene. 1991;104:147–53. PMID: 1916287. doi:10.1016/0378-1119(91)90244-6
  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552–54. PMID: 2247164. doi:10.1038/348552a0
  • Clackson T, Hoogenboom HR, Griffiths AD, Winter G. Making antibody fragments using phage display libraries. Nature. 1991;352:624–28. PMID: 1907718. doi:10.1038/352624a0
  • Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989;246:1275–81. PMID: 2531466. doi:10.1126/science.2531466
  • Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A. 1991;88:7978–82. PMID: 1896445. doi:10.1073/pnas.88.18.7978
  • Marks JD, Griffiths AD, Malmqvist M, Clackson TP, Bye JM, Winter G. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology (N Y). 1992;10:779–83. PMID: 1368267. doi:10.1038/nbt0792-779
  • Noronha EJ, Wang X, Desai SA, Kageshita T, Ferrone S. Limited diversity of human scFv fragments isolated by panning a synthetic phage-display scFv library with cultured human melanoma cells. J Immunol. 1998;161:2968–76. PMID: 9743360 https://www.ncbi.nlm.nih.gov/pubmed/9743360.
  • Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991;19:4133–37. PMID: 1908075. doi:10.1093/nar/19.15.4133
  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414:521–26. PMID: 9323027. doi:10.1016/s0014-5793(97)01062-4
  • Yan J, Li G, Hu Y, Ou W, Wan Y. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med. 2014;12:343. PMID: 25496223. doi:10.1186/s12967-014-0343-6
  • Beckmann R, Jensen K, Fenn S, Speck J, Krause K, Meier A, Roth M, Fauser S, Kimbung R, Logan DT, et al. DutaFabs are engineered therapeutic Fab fragments that can bind two targets simultaneously. Nat Commun. 2021;12:708. PMID: 33514724. doi:10.1038/s41467-021-20949-3.
  • McGuinness BT, Walter G, FitzGerald K, Schuler P, Mahoney W, Duncan AR, Hoogenboom HR. Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nat Biotechnol. 1996;14:1149–54. PMID: 9631069. doi:10.1038/nbt0996-1149
  • Fagete S, Botas-Perez L, Rossito-Borlat I, Adea K, Gueneau F, Ravn U, Rousseau F, Kosco-Vilbois M, Fischer N, Hartley O. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments. Protein Eng Des Sel. 2017;30:575–82. PMID: 28444391. doi:10.1093/protein/gzx021
  • Mazor Y, Van Blarcom T, Carroll S, Georgiou G. Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. FEBS J. 2010;277:2291–303. PMID: 20423457. doi:10.1111/j.1742-4658.2010.07645.x
  • Zhang L, Cong Y, Li H, Chen L, Li B, Huang JX, Dong J. Construction of a full-length antibody phage display vector. J Immunol Methods. 2021;494:113052. PMID: 33838171. doi:10.1016/j.jim.2021.113052
  • Tesar D, Hotzel I. A dual host vector for Fab phage display and expression of native IgG in mammalian cells. Protein Eng Des Sel. 2013;26:655–62. PMID: 24065833. doi:10.1093/protein/gzt050
  • Batonick M, Kiss MM, Fuller EP, Magadan CM, Holland EG, Zhao Q, Wang D, Kay BK, Weiner MP. pMINERVA: a donor-acceptor system for the in vivo recombineering of scFv into IgG molecules. J Immunol Methods. 2016;431:22–30. PMID: 26851519. doi:10.1016/j.jim.2016.02.003
  • Xiao X, Douthwaite JA, Chen Y, Kemp B, Kidd S, Percival-Alwyn J, Smith A, Goode K, Swerdlow B, Lowe D, et al. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. MAbs. 2017;9(6):996–1006. PMID: 28613102. doi:10.1080/19420862.2017.1337617.
  • Liu Y, Gu M, Wu Y, Wang W, Wang R, Du M, Ma P, Zhou X, Wang Y, Cao Y, et al. High-throughput reformatting of phage-displayed antibody fragments to IgGs by one-step emulsion PCR. Protein Eng Des Sel. 2018;31:427–36. PMID: 31096267. doi:10.1093/protein/gzz004.
  • Rhiel L, Krah S, Gunther R, Becker S, Kolmar H, Hock B, Sturtevant J. REAL-Select: full-length antibody display and library screening by surface capture on yeast cells. PLos One. 2014;9(12):e114887. PMID: 25501029. doi:10.1371/journal.pone.0114887.
  • Zhou C, Jacobsen FW, Cai L, Chen Q, Shen WD. Development of a novel mammalian cell surface antibody display platform. MAbs. 2010;2:508–18. PMID: 20716968. doi:10.4161/mabs.2.5.12970
  • Akamatsu Y, Pakabunto K, Xu Z, Zhang Y, Tsurushita N. Whole IgG surface display on mammalian cells: application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. J Immunol Methods. 2007;327:40–52. PMID: 17719061. doi:10.1016/j.jim.2007.07.007
  • O’Callaghan R, Bradley R, Paranchych W. The effect of M13 phage infection upon the F pili of E. coli. Virology. 1973;54:220–29. PMID: 4123460. doi:10.1016/0042-6822(73)90131-1
  • Stengele I, Bross P, Garces X, Giray J, Rasched I. Dissection of functional domains in phage fd adsorption protein. Discrimination between attachment and penetration sites. J Mol Biol. 1990;212:143–49. PMID: 2319594. doi:10.1016/0022-2836(90)90311-9
  • Sidhu SS. Engineering M13 for phage display. Biomol Eng. 2001;18:57–63. PMID: 11535417. doi:10.1016/s1389-0344(01)00087-9
  • Loset GA, Sandlie I. Next generation phage display by use of pVII and pIX as display scaffolds. Methods. 2012;58:40–46. PMID: 22819858. doi:10.1016/j.ymeth.2012.07.005
  • Kehoe JW, Kay BK. Filamentous phage display in the new millennium. Chem Rev. 2005;105:4056–72. PMID: 16277371. doi:10.1021/cr000261r
  • Lowman HB, Bass SH, Simpson N, Wells JA. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 1991;30:10832–38. PMID: 1932005. doi:10.1021/bi00109a004
  • Lee CV, Sidhu SS, Fuh G. Bivalent antibody phage display mimics natural immunoglobulin. J Immunol Methods. 2004;284:119–32. PMID: 14736422. doi:10.1016/j.jim.2003.11.001
  • Nilsson B, Moks T, Jansson B, Abrahmsen L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlen M. A synthetic IgG-binding domain based on staphylococcal protein a. Protein Eng. 1987;1:107–13. PMID: 3507693. doi:10.1093/protein/1.2.107
  • Rodi DJ, Makowski L. Phage-display technology–finding a needle in a vast molecular haystack. Curr Opin Biotechnol. 1999;10:87–93. PMID: 10047512. doi:10.1016/s0958-1669(99)80016-0
  • Omidfar K, Daneshpour M. Advances in phage display technology for drug discovery. Expert Opin Drug Discov. 2015;10:651–69. PMID: 25910798. doi:10.1517/17460441.2015.1037738
  • Chang A, Ting JP, Espada A, Broughton H, Molina-Martin M, Afshar S. A novel phage display vector for selection of target-specific peptides. Protein Eng Des Sel. 2020;33 PMID: 33009572. doi:10.1093/protein/gzaa023.
  • Bass S, Greene R, Wells JA. Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins. 1990;8:309–14. PMID: 1708882. doi:10.1002/prot.340080405
  • Sidhu SS, Geyer CR. Phage display in biotechnology and drug discovery. Boca Raton (FL): CRC Press; 2015.
  • Azzazy HM, Highsmith WE Jr. Phage display technology: clinical applications and recent innovations. Clin Biochem. 2002;35:425–45. PMID: 12413604. doi:10.1016/s0009-9120(02)00343-0
  • Felici F, Castagnoli L, Musacchio A, Jappelli R, Cesareni G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol. 1991;222:301–10. PMID: 1720463. doi:10.1016/0022-2836(91)90213-p
  • Kwasnikowski P, Kristensen P, Markiewicz WT. Multivalent display system on filamentous bacteriophage pVII minor coat protein. J Immunol Methods. 2005;307:135–43. PMID: 16277988. doi:10.1016/j.jim.2005.10.002
  • Wang KC, Wang X, Zhong P, Luo PP. Adapter-directed display: a modular design for shuttling display on phage surfaces. J Mol Biol. 2010;395:1088–101. PMID: 19969002. doi:10.1016/j.jmb.2009.11.068
  • Rondot S, Koch J, Breitling F, Dubel S. A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol. 2001;19:75–78. PMID: 11135557. doi:10.1038/83567
  • Soltes G, Hust M, Ng KK, Bansal A, Field J, Stewart DI, Dubel S, Cha S, Wiersma EJ. On the influence of vector design on antibody phage display. J Biotechnol. 2007;127:626–37. PMID: 16996161. doi:10.1016/j.jbiotec.2006.08.015
  • Kramer RA, Cox F, van der Horst M, van der Oudenrijn S, Res PC, Bia J, Logtenberg T, de Kruif J. A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucleic Acids Res. 2003;31(11):e59. PMID: 12771223. doi:10.1093/nar/gng058.
  • Baek H, Suk KH, Kim YH, Cha S. An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res. 2002;30:e18. PMID: 11861923. doi:10.1093/nar/30.5.e18
  • Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ. A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. J Immunol Methods. 2003;274:233–44. PMID: 12609549. doi:10.1016/s0022-1759(02)00294-6
  • Beaber JW, Tam EM, Lao LS, Rondon IJ. A new helper phage for improved monovalent display of Fab molecules. J Immunol Methods. 2012;376:46–54. PMID: 22119405. doi:10.1016/j.jim.2011.11.006
  • Shim H. Synthetic approach to the generation of antibody diversity. BMB Rep. 2015;48:489–94. PMID: 26129672. doi:10.5483/bmbrep.2015.48.9.120
  • Virnekas B, Ge L, Pluckthun A, Schneider KC, Wellnhofer G, Moroney SE. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 1994;22:5600–07. PMID: 7838712. doi:10.1093/nar/22.25.5600
  • Kosuri S, Church GM. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods. 2014;11:499–507. PMID: 24781323. doi:10.1038/nmeth.2918
  • den Brulle J V, Fischer M, Langmann T, Horn G, Waldmann T, Arnold S, Fuhrmann M, Schatz O, O’Connell T, O’Connell D, et al. A novel solid phase technology for high-throughput gene synthesis. Biotechniques. 2008;45:340–43. PMID: 18778261. doi:10.2144/000112953.
  • Cox A, Treusch S, Chen S, inventors; Twist bioscience corporations assignees. Oligonucleic acid variant libraries and synthesis thereof. United States patent US 2021/0040476A1. 2020 Oct 12.
  • Indermuhle PF, Marsh EP, Fernandez A, Banyai W, Peck BJ, inventors; Twist bioscience corporations assignees. Methods and devices for de novo oligonucleic acid assembly. WIPO (PCT) Patent WO2016/126882A1. 2016 Feb 03.
  • Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol. 1996;14:309–14. PMID: 9630891. doi:10.1038/nbt0396-309
  • Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. Embo J . 1994;13:3245–60. PMID: 8045255. doi:10.1002/j.1460-2075.1994.tb06626.x
  • Bertoglio F, Meier D, Langreder N, Steinke S, Rand U, Simonelli L, Heine PA, Ballmann R, Schneider KT, Roth KDR, et al. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun. 2021;12:1577. PMID: 33707427. doi:10.1038/s41467-021-21609-2.
  • Lloyd C, Lowe D, Edwards B, Welsh F, Dilks T, Hardman C, Vaughan T. Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng Des Sel. 2009;22:159–68. PMID: 18974080. doi:10.1093/protein/gzn058
  • Soderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C, et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol. 2000;18:852–56. PMID: 10932154. doi:10.1038/78458.
  • Romani C, Comper F, Bandiera E, Ravaggi A, Bignotti E, Tassi RA, Pecorelli S, Santin AD. Development and characterization of a human single-chain antibody fragment against claudin-3: a novel therapeutic target in ovarian and uterine carcinomas. Am J Obstet Gynecol. 2009;201:70 e71–79. PMID: 19426958. doi:10.1016/j.ajog.2009.02.010
  • Weber M, Bujak E, Putelli A, Villa A, Matasci M, Gualandi L, Hemmerle T, Wulhfard S, Neri D, Isalan M. A highly functional synthetic phage display library containing over 40 billion human antibody clones. PLos One. 2014;9:e100000. PMID: 24950200. doi:10.1371/journal.pone.0100000.
  • Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol. 2005;23(3):344–48. PMID: 15723048. doi:10.1038/nbt1067.
  • Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, et al. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol. 2008;376:1182–200. PMID: 18191144. doi:10.1016/j.jmb.2007.12.018.
  • Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Norenberg S, Stark Y, Kolln J, Popp A, et al. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol. 2011;413:261–78. PMID: 21856311. doi:10.1016/j.jmb.2011.08.012.
  • Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, et al. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs. 2013;5:445–70. PMID: 23571156. doi:10.4161/mabs.24218.
  • Valadon P, Perez-Tapia SM, Nelson RS, Guzman-Bringas OU, Arrieta-Oliva HI, Gomez-Castellano KM, Pohl MA, Almagro JC. ALTHEA Gold Libraries: antibody libraries for therapeutic antibody discovery. MAbs. 2019;11:516–31. PMID: 30663541. doi:10.1080/19420862.2019.1571879
  • Teixeira AA, Erasmus MF, D’Angelo S, Naranjo L, Ferrara F, Leal-Lopes C, Durrant O, Galmiche C, Morelli A, Scott-Tucker A, et al. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. MAbs. 2021;13:1980942. PMID: 34850665. doi:10.1080/19420862.2021.1980942.
  • Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991;222:581–97. PMID: 1748994. doi:10.1016/0022-2836(91)90498-u
  • Persson MA, Caothien RH, Burton DR. Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci U S A. 1991;88:2432–36. PMID: 1826052. doi:10.1073/pnas.88.6.2432
  • Wang L, Radic MZ, Siegel D, Chang T, Bracy J, Galili U. Cloning of anti-Gal Fabs from combinatorial phage display libraries: structural analysis and comparison of Fab expression in pComb3h and pComb8 phage. Mol Immunol. 1997;34:609–18. PMID: 9393964. doi:10.1016/s0161-5890(97)00082-5
  • Siegel DL, Chang TY, Russell SL, Bunya VY. Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology. J Immunol Methods. 1997;206:73–85. PMID: 9328570. doi:10.1016/s0022-1759(97)00087-2
  • Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J, Baier M, Holliger KP, Gorick BD, Hughes-Jones NC, et al. Human anti-self antibodies with high specificity from phage display libraries. Embo J . 1993;12:725–34. PMID: 7679990. doi:10.1002/j.1460-2075.1993.tb05706.x
  • Melchers F, ten Boekel E, Seidl T, Kong XC, Yamagami T, Onishi K, Shimizu T, Rolink AG, Andersson J. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol Rev. 2000;175:33–46. PMID: 10933589 https://www.ncbi.nlm.nih.gov/pubmed/10933589.
  • Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–77. PMID: 12920303. doi:10.1126/science.1086907
  • Kugler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dubel S, Garritsen H, Hock B, Toleikis L, et al. Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol. 2015;15:10. PMID: 25888378. doi:10.1186/s12896-015-0125-0.
  • Hoogenboom HR, Winter G. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol. 1992;227:381–88. PMID: 1404359. doi:10.1016/0022-2836(92)90894-p
  • Barbas CF 3rd, Bain JD, Hoekstra DM, Lerner RA. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A. 1992;89:4457–61. PMID: 1584777. doi:10.1073/pnas.89.10.4457
  • Garrard LJ, Henner DJ. Selection of an anti-IGF-1 Fab from a Fab phage library created by mutagenesis of multiple CDR loops. Gene. 1993;128:103–09. PMID: 8099557. doi:10.1016/0378-1119(93)90160-5
  • de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, Arends J-W, de Bruine AP, de Haard JW, Hoogenboom HR, et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem. 1999;274:18218–30. PMID: 10373423. doi:10.1074/jbc.274.26.18218.
  • Schwimmer LJ, Huang B, Giang H, Cotter RL, Chemla-Vogel DS, Dy FV, Tam EM, Zhang F, Toy P, Bohmann DJ, et al. Discovery of diverse and functional antibodies from large human repertoire antibody libraries. J Immunol Methods. 2013;391:60–71. PMID: 23454004. doi:10.1016/j.jim.2013.02.010.
  • Diebolder P, Keller A, Haase S, Schlegelmilch A, Kiefer JD, Karimi T, Weber T, Moldenhauer G, Kehm R, Eis-Hubinger AM, et al. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential. MAbs. 2014;6:130–42. PMID: 24256717. doi:10.4161/mabs.27236.
  • Lee CV, Liang WC, Dennis MS, Eigenbrot C, Sidhu SS, Fuh G. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol. 2004;340:1073–93. PMID: 15236968. doi:10.1016/j.jmb.2004.05.051
  • Kim S, Park I, Park SG, Cho S, Kim JH, Ipper NS, Choi SS, Lee ES, Hong HJ. Generation, diversity determination, and application to antibody selection of a human naive fab library. Mol Cells. 2017;40:655–66. PMID: 28927259. doi:10.14348/molcells.2017.0106
  • Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (N Y). 1994;12:899–903. PMID: 7521646. doi:10.1038/nbt0994-899
  • Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, Lappin PB, Riccobene T, Abramian D, Sekut L, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 2003;48:3253–65. PMID: 14613291. doi:10.1002/art.11299.
  • Ho M, Nagata S, Pastan I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A. 2006;103:9637–42. PMID: 16763048. doi:10.1073/pnas.0603653103
  • Dhillon S. Moxetumomab pasudotox: first global approval. Drugs. 2018;78:1763–67. PMID: 30357593. doi:10.1007/s40265-018-1000-9
  • Mazumdar S. Raxibacumab. MAbs. 2009;1:531–38. PMID: 20068396. doi:10.4161/mabs.1.6.10195
  • Al-Salama ZT. Emapalumab: first global approval. Drugs. 2019;79:99–103. PMID: 30623346. doi:10.1007/s40265-018-1046-8
  • Duggan S. Tralokinumab: first approval. Drugs. 2021;81:1657–63. PMID: 34406631. doi:10.1007/s40265-021-01583-1
  • Sommer A, Kopitz C, Schatz CA, Nising CF, Mahlert C, Lerchen HG, Stelte-Ludwig B, Hammer S, Greven S, Schuhmacher J, et al. Preclinical efficacy of the auristatin-based antibody–drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res. 2016;76:6331–39. PMID: 27543601. doi:10.1158/0008-5472.CAN-16-0180.
  • Jerkeman M, McAllister A, Roos C, Andersson ML, Karlsson I, Borggren M, Abrisqueta P, Carneiro A, Cordoba R, Hagberg H, et al. 17-BI-1206-02 phase 1/2a clinical trial of BI-1206, a monoclonal antibody to fcgriib, in combination with rituximab in subjects with indolent B-Cell non-hodgkin lymphoma that has relapsed or is refractory to rituximab. Blood. 2020;136:2. doi:10.1182/blood-2020-140219.
  • Willuda J, Linden L, Lerchen HG, Kopitz C, Stelte-Ludwig B, Pena C, Lange C, Golfier S, Kneip C, Carrigan PE, et al. Preclinical antitumor efficacy of BAY 1129980—a novel auristatin-based anti-C4.4A (LYPD3) antibody–drug conjugate for the treatment of non–small cell lung cancer. Mol Cancer Ther. 2017;16:893–904. PMID: 28292941. doi:10.1158/1535-7163.MCT-16-0474.
  • Wichert S, Juliusson G, Johansson A, Sonesson E, Teige I, Wickenberg AT, Frendeus B, Korsgren M, Hansson M, Hills RK. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLos One. 2017;12:e0171205. PMID: 28158311. doi:10.1371/journal.pone.0171205.
  • Lehrer-Graiwer J, Singh P, Abdelbaky A, Vucic E, Korsgren M, Baruch A, Fredrickson J, van Bruggen N, Tang MT, Frendeus B, et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc Imaging. 2015;8:493–94. PMID: 25457756. doi:10.1016/j.jcmg.2014.06.021.
  • Sall A, Walle M, Wingren C, Muller S, Nyman T, Vala A, Ohlin M, Borrebaeck CAK, Persson H. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays. Protein Eng Des Sel. 2016;29(10):427–37. PMID: 27590051. doi:10.1093/protein/gzw042.
  • Persson H, Ye W, Wernimont A, Adams JJ, Koide A, Koide S, Lam R, Sidhu SS. CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. J Mol Biol. 2013;425(4):803–11. PMID: 23219464. doi:10.1016/j.jmb.2012.11.037.
  • Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem. 1998;273:21769–76. PMID: 9705314. doi:10.1074/jbc.273.34.21769
  • Silacci M, Brack S, Schirru G, Marlind J, Ettorre A, Merlo A, Viti F, Neri D. Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics. 2005;5:2340–50. PMID: 15880779. doi:10.1002/pmic.200401273
  • Villa A, Lovato V, Bujak E, Wulhfard S, Pasche N, Neri D. A novel synthetic naive human antibody library allows the isolation of antibodies against a new epitope of oncofetal fibronectin. MAbs. 2011;3:264–72. PMID: 21487243. doi:10.4161/mabs.3.3.15616
  • Danielli R, Patuzzo R, Di Giacomo AM, Gallino G, Maurichi A, Di Florio A, Cutaia O, Lazzeri A, Fazio C, Miracco C, et al. Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: results of a phase II study. Cancer Immunol Immunother. 2015;64:999–1009. PMID: 25971540. doi:10.1007/s00262-015-1704-6.
  • Erba PA, Sollini M, Orciuolo E, Traino C, Petrini M, Paganelli G, Bombardieri E, Grana C, Giovannoni L, Neri D, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med. 2012;53:922–27. PMID: 22577235. doi:10.2967/jnumed.111.101006.
  • Schliemann C, Gutbrodt KL, Kerkhoff A, Pohlen M, Wiebe S, Silling G, Angenendt L, Kessler T, Mesters RM, Giovannoni L, et al. Targeting interleukin-2 to the bone marrow stroma for therapy of acute myeloid leukemia relapsing after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Res. 2015;3:547–56. PMID: 25672398. doi:10.1158/2326-6066.CIR-14-0179.
  • Galeazzi M, Sebastiani G, Voll R, Viapiana O, Dudler J, Zufferey P, Selvi E, Finzel S, Bootz FS, Neri D. Fri0118 dekavil (F8IL10) – update on the results of clinical trials investigating the immunocytokine in patients with rheumatoid arthritis. Ann Rheum Dis. 2018;77. doi:10.1136/annrheumdis-2018-eular.5550.
  • Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak JN, Rosli C, Borsi L, Neri D. A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer. 2008;122:2405–13. PMID: 18271006. doi:10.1002/ijc.23408
  • Ignatovich O, Tomlinson IM, Jones PT, Winter G. The creation of diversity in the human immunoglobulin V(lambda) repertoire. J Mol Biol. 1997;268:69–77. PMID: 9149142. doi:10.1006/jmbi.1997.0956
  • Detanico T, Phillips M, Wysocki LJ. Functional versatility of AGY serine codons in immunoglobulin variable region genes. Front Immunol. 2016;7:525. PMID: 27920779. doi:10.3389/fimmu.2016.00525
  • Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GM, et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A. 2009;106:20216–21. PMID: 19875695. doi:10.1073/pnas.0909775106.
  • Poole RM, Vaidya A. Ramucirumab: first global approval. Drugs. 2014;74:1047–58. PMID: 24916147. doi:10.1007/s40265-014-0244-2
  • Garnock-Jones KP. Necitumumab: first global approval. Drugs. 2016;76:283–89. PMID: 26729188. doi:10.1007/s40265-015-0537-0
  • ES K. Avelumab: first global approval. Drugs. 2017;77:929–37. PMID: 28456944. doi:10.1007/s40265-017-0749-6
  • Syed YY. Lanadelumab: first global approval. Drugs. 2018;78:1633–37. PMID: 30267321. doi:10.1007/s40265-018-0987-2
  • Jian JW, Chen HS, Chiu YK, Peng HP, Tung CP, Chen IC, Yu CM, Tsou YL, Kuo WY, Hsu HJ, et al. Effective binding to protein antigens by antibodies from antibody libraries designed with enhanced protein recognition propensities. MAbs. 2019;11:373–87. PMID: 30526270. doi:10.1080/19420862.2018.1550320.
  • Fellouse FA, Wiesmann C, Sidhu SS. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A. 2004;101:12467–72. PMID: 15306681. doi:10.1073/pnas.0401786101
  • Fellouse FA, Esaki K, Birtalan S, Raptis D, Cancasci VJ, Koide A, Jhurani P, Vasser M, Wiesmann C, Kossiakoff AA, et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol. 2007;373:924–40. PMID: 17825836. doi:10.1016/j.jmb.2007.08.005.
  • Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296:57–86. PMID: 10656818. doi:10.1006/jmbi.1999.3444
  • Markham A. Guselkumab: first global approval. Drugs. 2017;77:1487–92. PMID: 28819723. doi:10.1007/s40265-017-0800-7
  • Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol. 2004;22:1161–65. PMID: 15300256. doi:10.1038/nbt1000
  • Mendoza-Salazar I, Gomez-Castellano KM, Gonzalez-Gonzalez E, Gamboa-Suasnavart R, Rodriguez-Luna SD, Santiago-Casas G, Cortes-Paniagua MI, Perez-Tapia SM, Almagro JC. Anti-SARS-CoV-2 omicron antibodies isolated from a SARS-CoV-2 delta semi-immune phage display library. Antibodies (Basel). 2022;11(1):13. PMID: 35225871. doi:10.3390/antib11010013.
  • Pedraza-Escalona M, Guzman-Bringas O, Arrieta-Oliva HI, Gomez-Castellano K, Salinas-Trujano J, Torres-Flores J, Munoz-Herrera JC, Camacho-Sandoval R, Contreras-Pineda P, Chacon-Salinas R, et al. Isolation and characterization of high affinity and highly stable anti-Chikungunya virus antibodies using ALTHEA gold libraries™. BMC Infect Dis. 2021;21:1121. PMID: 34717584. doi:10.1186/s12879-021-06717-0.
  • Schwabl S, Teis D. Protein quality control at the Golgi. Curr Opin Cell Biol. 2022;75:102074. PMID: 35364487. doi:10.1016/j.ceb.2022.02.008
  • Phillips BP, Gomez-Navarro N, Miller EA. Protein quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 2020;65:96–102. PMID: 32408120. doi:10.1016/j.ceb.2020.04.002
  • Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD. Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol. 1999;292:949–56. PMID: 10512694. doi:10.1006/jmbi.1999.3130
  • Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. 2018;93:251–58. PMID: 29298813. doi:10.1124/mol.117.111062
  • Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42. PMID: 29075003. doi:10.1038/nrd.2017.178
  • Mullard A. FDA approves second GPCR-targeted antibody. Nat Rev Drug Discov. 2018;17:613. PMID: 30160256. doi:10.1038/nrd.2018.153
  • Dodd R, Schofield DJ, Wilkinson T, Britton ZT. Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: overcoming the antigen challenge and enabling discovery strategies. Methods. 2020;180:111–26. PMID: 32422249. doi:10.1016/j.ymeth.2020.05.006.
  • Devanaboyina SC, Lynch SM, Ober RJ, Ram S, Kim D, Puig-Canto A, Breen S, Kasturirangan S, Fowler S, Peng L, et al. The effect of pH dependence of antibody-antigen interactions on subcellular trafficking dynamics. MAbs. 2013;5:851–59. PMID: 24492341. doi:10.4161/mabs.26389.
  • Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25. PMID: 17703228. doi:10.1038/nri2155
  • Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T, Takubo R, Doi Y, et al. Antibody recycling by engineered Ph-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol. 2010;28:1203–07. PMID: 20953198. doi:10.1038/nbt.1691.
  • Chaparro-Riggers J, Liang H, DeVay RM, Bai L, Sutton JE, Chen W, Geng T, Lindquist K, Casas MG, Boustany LM, et al. Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with Ph-sensitive binding to PCSK9. J Biol Chem. 2012;287:11090–97. PMID: 22294692. doi:10.1074/jbc.M111.319764.
  • Igawa T, Maeda A, Haraya K, Tachibana T, Iwayanagi Y, Mimoto F, Higuchi Y, Ishii S, Tamba S, Hironiwa N, et al. Engineered monoclonal antibody with novel antigen-sweeping activity in vivo. PLos One. 2013;8:e63236. PMID: 23667591. doi:10.1371/journal.pone.0063236.
  • Zemlin M, Klinger M, Link J, Zemlin C, Bauer K, Engler JA, Schroeder HW Jr., Kirkham PM. Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J Mol Biol. 2003;334:733–49. PMID: 14636599. doi:10.1016/j.jmb.2003.10.007
  • Johnson G, Wu TT. Preferred CDRH3 lengths for antibodies with defined specificities. Int Immunol. 1998;10:1801–05. PMID: 9885900. doi:10.1093/intimm/10.12.1801
  • Collis AV, Brouwer AP, Martin AC. Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol. 2003;325:337–54. PMID: 12488099. doi:10.1016/s0022-2836(02)01222-6
  • Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol Rev. 2013;254:225–44. PMID: 23772623. doi:10.1111/imr.12075
  • McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature. 2011;480:336–43. PMID: 22113616. doi:10.1038/nature10696.
  • Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128:178–83. PMID: 19026455. doi:10.1016/j.vetimm.2008.10.299.
  • Haakenson JK, Huang R, Smider VV. Diversity in the cow ultralong CDR H3 antibody repertoire. Front Immunol. 2018;9:1262. PMID: 29915599. doi:10.3389/fimmu.2018.01262.
  • Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O, Torkamani A, Raudsepp T, Mwangi W, Criscitiello MF, et al. Reshaping antibody diversity. Cell. 2013;153:1379–93. PMID: 23746848. doi:10.1016/j.cell.2013.04.049.
  • Nam DH, Rodriguez C, Remacle AG, Strongin AY, Ge X. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc Natl Acad Sci U S A. 2016;113(52):14970–75. PMID: 27965386. doi:10.1073/pnas.1609375114.
  • Bai X, Kim J, Kang S, Kim W, Shim H, Gill AC. A novel human scFv library with non-combinatorial synthetic CDR diversity. PLos One. 2015;10:e0141045. PMID: 26484868. doi:10.1371/journal.pone.0141045.
  • Bhat NM, Bieber MM, Stevenson FK, Teng NN. Rapid cytotoxicity of human B lymphocytes induced by VH4-34 (VH4.21) gene-encoded monoclonal antibodies. Clin Exp Immunol. 1996;105:183–90. PMID: 8697629. doi:10.1046/j.1365-2249.1996.d01-733.x
  • Jayaram N, Bhowmick P, Martin AC. Germline VH/VL pairing in antibodies. Protein Eng Des Sel. 2012;25:523–29. PMID: 22802295. doi:10.1093/protein/gzs043
  • Ewert S, Huber T, Honegger A, Pluckthun A. Biophysical properties of human antibody variable domains. J Mol Biol. 2003;325:531–53. PMID: 12498801. doi:10.1016/s0022-2836(02)01237-8
  • Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules. 2011;16:1776–803. PMID: 21339712. doi:10.3390/molecules16021776
  • Matochko WL, Cory Li S, Tang SK, Derda R. Prospective identification of parasitic sequences in phage display screens. Nucleic Acids Res. 2014;42:1784–98. PMID: 24217917. doi:10.1093/nar/gkt1104
  • Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, Morelli MJ, Sasso E. High-throughput monoclonal antibody discovery from phage libraries: challenging the current preclinical pipeline to keep the pace with the increasing mAb demand. Cancers (Basel). 2022;14 PMID: 35267633. doi:10.3390/cancers14051325.
  • Rouet R, Jackson KJL, Langley DB, Christ D. Next-generation sequencing of antibody display repertoires. Front Immunol. 2018;9:118. PMID: 29472918. doi:10.3389/fimmu.2018.00118
  • Wilman W, Wrobel S, Bielska W, Deszynski P, Dudzic P, Jaszczyszyn I, Kaniewski J, Mlokosiewicz J, Rouyan A, Satlawa T, et al. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief Bioinform. 2022;23: PMID: 35830864. doi:10.1093/bib/bbac267.
  • Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, Flem-Karlsen K, Frank R, Mehta BB, Vu MH, et al. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs. 2022;14:2008790. PMID: 35293269. doi:10.1080/19420862.2021.2008790.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 2017;114:944–49. PMID: 28096333. doi:10.1073/pnas.1616408114.
  • Spencer S, Bethea D, Raju TS, Giles-Komar J, Feng Y. Solubility evaluation of murine hybridoma antibodies. MAbs. 2012;4:319–25. PMID: 22531448. doi:10.4161/mabs.19869
  • Bradbury AR, Sidhu S, Dubel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011;29:245–54. PMID: 21390033. doi:10.1038/nbt.1791
  • Dyson MR, Masters E, Pazeraitis D, Perera RL, Syrjanen JL, Surade S, Thorsteinson N, Parthiban K, Jones PC, Sattar M, et al. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs. 2020;12:1829335. PMID: 33103593. doi:10.1080/19420862.2020.1829335.
  • Deal CE, Carfi A, Plante OJ. Advancements in mRNA encoded antibodies for passive immunotherapy. Vaccines (Basel). 2021;9:108. PMID: 33572679. doi:10.3390/vaccines9020108.
  • Patel A, Bah MA, Weiner DB. In Vivo delivery of nucleic acid-encoded monoclonal antibodies. BioDrugs. 2020;34:273–93. PMID: 32157600. doi:10.1007/s40259-020-00412-3