3,279
Views
0
CrossRef citations to date
0
Altmetric
Report

Molecular recognition requires dimerization of a VHH antibody

, , , , , , ORCID Icon & ORCID Icon show all
Article: 2215363 | Received 30 Jan 2023, Accepted 15 May 2023, Published online: 27 May 2023

References

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–14. PMID: 8502296. doi:10.1038/363446a0.
  • Spinelli S, Tegoni M, Frenken L, van Vliet C, Cambillau C. Lateral recognition of a dye hapten by a llama VHH domain. J Mol Biol. 2001;311(1):123–29. PMID: 11469862. doi:10.1006/jmbi.2001.4856.
  • Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. 1994;7(9):1129–35. PMID: 7831284. doi:10.1093/protein/7.9.1129.
  • Wu TT, Johnson G, Kabat EA. Length distribution of CDRH3 in antibodies. Proteins: Struct Funct Genet. 1993;16(1):1–7. PMID: 8497480. doi:10.1002/prot.340160102.
  • Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S, Wyns L. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure. 1999;7(4):361–70. PMID: 10196124. doi:10.1016/s0969-2126(99)80049-5.
  • Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L, Muyldermans S, Cambillau C. Threecamelid VHH domains in complex with porcine pancreatic α-amylase. J Biol Chem. 2002;277(26):23645–50. PMID: 11960990. doi:10.1074/jbc.M202327200.
  • Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F, Hamers R, Muyldermans S, Wyns L. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol. 1996;3(9):803–11. PMID: 8784355. doi:10.1038/nsb0996-803.
  • Hoey RJ, Eom H, Horn JR. Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Exp Biol Med (Maywood). 2019;244(17):1568–76. PMID: 31594404. doi:10.1177/1535370219881129.
  • Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins Struct Funct Bioinf. 2018;86(7):697–706. PMID: 29569425. doi:10.1002/prot.25497.
  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature. 2011;469(7329):175–80. PMID: 21228869. doi:10.1038/nature09648.
  • Anderson GP, Goldman ER. TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. J Immunol Methods. 2008;339(1):47–54. PMID: 18755196. doi:10.1016/j.jim.2008.08.001.
  • Alvarez-Rueda N, Behar G, Ferre V, Pugniere M, Roquet F, Gastinel L, Jacquot C, Aubry J, Baty D, Barbet J, et al. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol. 2007;44(7):1680–90. PMID: 17011035. doi:10.1016/j.molimm.2006.08.007.
  • Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K, Tegoni M, Cambillau C. Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry. 2000;39(6):1217–22. PMID: 10684599. doi:10.1021/bi991830w.
  • De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103(12):4586–91. PMID: 16537393. doi:10.1073/pnas.0505379103.
  • Fanning SW, Horn JR. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop. Protein Sci. 2011;20(7):1196–207. PMID: 21557375. doi:10.1002/pro.648.
  • Tabares-da Rosa S, Wogulis LA, Wogulis MD, Gonzalez-Sapienza G, Wilson DK. Structure and specificity of several triclocarban-binding single domain camelid antibody fragments. J Mol Recognit. 2019;32(1):e2755. PMID: 30033524. doi:10.1002/jmr.2755.
  • Ding L, Wang Z, Zhong P, Jiang H, Zhao Z, Zhang Y, Ren Z, Ding Y. Structural insights into the mechanism of single domain VHH antibody binding to cortisol. FEBS Lett. 2019;593:1248–56. PMID: 31049949. doi:10.1002/1873-3468.13398
  • Ladenson RC, Crimmins DL, Landt Y, Ladenson JH. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem. 2006;78(13):4501–08. PMID: 16808459. doi:10.1021/ac058044j.
  • Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol. 2000;37(10):579–90. PMID: 11163394. doi:10.1016/s0161-5890(00)00081-x.
  • Sonneson GJ, Horn JR. Hapten-induced dimerization of a single-domain VHH camelid antibody. Biochemistry. 2009;48(29):6693–95. PMID: 19572722. doi:10.1021/bi900862r.
  • Chang HJ, Mayonove P, Zavala A, De Visch A, Minard P, Cohen-Gonsaud M, Bonnet J. A modular receptor platform to expand the sensing repertoire of bacteria. ACS Synth Biol. 2018;7(1):166–75. PMID: 28946740. doi:10.1021/acssynbio.7b00266.
  • Bojar D, Scheller L, Hamri GC, Xie M, Fussenegger M. Caffeine-inducible gene switches controlling experimental diabetes. Nat Commun. 2018;9(1):2318. PMID: 29921872. doi:10.1038/s41467-018-04744-1.
  • Lesne J, Chang HJ, De Visch A, Paloni M, Barthe P, Guichou JF, Mayonove P, Barducci A, Labesse G, Bonnet J, et al. Structural basis for chemically-induced homodimerization of a single domain antibody. null. 2019;9(1):1840. PMID: 30755682. doi:10.1038/s41598-019-38752-y.
  • Yau KY, Groves MA, Li S, Sheedy C, Lee H, Tanha J, MacKenzie CR, Jermutus L, Hall JC. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J Immunol Methods. 2003;281(1–2):161–75. PMID: 14580890. doi:10.1016/j.jim.2003.07.011.
  • Kirchhofer A, Helma J, Schmidthals K, Frauer C, Cui S, Karcher A, Pellis M, Muyldermans S, Casas-Delucchi CS, Cardoso MC, et al. Modulation of protein properties in living cells using nanobodies. Nature Structural & Molecular Biology. 2010;17(1):133–38. PMID: 20010839. doi:10.1038/nsmb.1727.
  • Pozharski E, Moulin A, Hewagama A, Shanafelt AB, Petsko GA, Ringe D. Diversity in hapten recognition: structural study of an anti-cocaine antibody M82G2. J Mol Biol. 2005;349(3):570–82. PMID: 15885702. doi:10.1016/j.jmb.2005.03.080.
  • Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27(1):293–315. PMID: 29067766. doi:10.1002/pro.3330.
  • Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, Muyldermans S, Loris R. Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol. 2005;350(1):112–25. PMID: 15913651. doi:10.1016/j.jmb.2005.04.050.
  • Koide A, Tereshko V, Uysal S, Margalef K, Kossiakoff AA, Koide S. Exploring the capacity of minimalist protein interfaces: interface energetics and affinity maturation to picomolar KD of a single-domain antibody with a flat paratope. J Mol Biol. 2007;373(4):941–53. PMID: 17888451. doi:10.1016/j.jmb.2007.08.027.
  • Myers JK, Pace CN, Scholtz JM. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995;4(10):2138–48. PMID: 8535251. doi:10.1002/pro.5560041020.
  • Rothlisberger D, Honegger A, Pluckthun A. Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol. 2005;347(4):773–89. PMID: 15769469. doi:10.1016/j.jmb.2005.01.053.
  • van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, Frenken L. Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Methods. 2000;240(1–2):185–95. PMID: 10854612. doi:10.1016/s0022-1759(00)00188-5.
  • Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26. PMID: 27754618. doi:10.1016/S0076-6879(97)76066-X
  • Collaborative Computational Project N. The CCP4 suite: programs for protein crystallography. Acta Cryst. 1994;50(5):760–63. doi:10.1107/S0907444994003112.
  • Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(2):213–21. PMID: 20124702. doi:10.1107/S0907444909052925.
  • Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(12):2126–32. PMID: 15572765. doi:10.1107/S0907444904019158.
  • Hubbard SJ, Thornton JM. NACCESS, Computer Program. Ver Vol. V2 1.1: software, University College London, “NACCESS”, Computer Program, Department of Biochemistry and Molecular Biology. 1993.
  • DeLano WL The PyMOL molecular graphics system. [software] San Carlos, CA, USA: DeLano Scientific; 2002. http://www.pymol.org.
  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995;4(11):2411–23. doi:10.1002/pro.5560041120.
  • Turnbull WB, Daranas AH. On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc. 2003;125(48):14859–66. PMID: 14640663. doi:10.1021/ja036166s.
  • Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78(3):1606–19. PMID: 10692345. doi:10.1016/S0006-3495(00)76713-0.
  • Herr AB, Conrady DG. Thermodynamic analysis of metal ion-induced protein assembly. Methods Enzymol. 2011;488:101–21. PMID: 21195226. doi:10.1016/B978-0-12-381268-1.00005-7
  • Herr AB, Ornitz DM, Sasisekharan R, Venkataraman G, Waksman G. Heparin-induced self-association of fibroblast growth factor-2. Evidence for two oligomerization processes. J Biol Chem. 1997;272(26):16382–89. PMID: 9195945. doi:10.1074/jbc.272.26.16382.
  • Herr AB, White CL, Milburn C, Wu C, Bjorkman PJ. Bivalent Binding of IgA1 to FcαRI suggests a mechanism for cytokine activation of IgA phagocytosis. J Mol Biol. 2003;327(3):645–57. PMID: 12634059. doi:10.1016/s0022-2836(03)00149-9.