1,909
Views
2
CrossRef citations to date
0
Altmetric
Review

Effects of the COVID-19 pandemic: new approaches for accelerated delivery of gene to first-in-human CMC data for recombinant proteins

ORCID Icon, & ORCID Icon
Article: 2220150 | Received 13 Feb 2023, Accepted 26 May 2023, Published online: 06 Jun 2023

References

  • Pustake M, Tambolkar I, Giri P, Gandhi C. SARS, MERS and CoVID-19: an overview and comparison of clinical, laboratory and radiological features. J Family Med Prim Care. 2022 Jan;11(1):10–17. PMID: 35309670. doi:10.4103/jfmpc.jfmpc_839_21.
  • Gordy JT, Mazumdar K, Dutta NK. Accelerating drug development through repurposed FDA-Approved drugs for COVID-19: speed is important, not haste. Antimicrob Agents Chemother. 2020 Jul 22;64(8):e00857–20. PMID: 32423954. 10.1128/AAC.00857-20.
  • Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Polack FP, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med. 2021 Nov 4;385(19):1761–73. PMID: 34525277. 10.1056/NEJMoa2110345.
  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021 Feb 4;384(5):403–16. PMID: 33378609. 10.1056/NEJMoa2035389.
  • Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021 Jan 9;397(10269):99–111. Erratum in: Lancet. 2021 Jan 9;397(10269):98. PMID: 33306989. doi:10.1016/S0140-6736(20)32661-1.
  • Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2021 Feb 16;325(7):632–44. PMID: 33475701. 10.1001/jama.2021.0202.
  • Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 2021 Jan 21;384(3):238–51. PMID: 33332778. 10.1056/NEJMoa2035002.
  • Self WH, Sandkovsky U, Reilly CS, Vock DM, Gottlieb RL, Mack M, Golden K, Dishner E, Vekstein A, Ko ER, et al. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect Dis. 2022 May;22(5):622–35. PMID: 34953520. doi:10.1016/S1473-3099(21)00751-9.
  • Montgomery H, Hobbs FDR, Padilla F, Arbetter D, Templeton A, Seegobin S, Kim K, Campos JAS, Arends RH, Brodek BH, et al. Efficacy and safety of intramuscular administration of tixagevimab–cilgavimab for early outpatient treatment of COVID-19 (TACKLE): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2022 Oct;10(10):985–96. PMID: 35688164. doi:10.1016/S2213-2600(22)00180-1.
  • Grobler JA, Anderson AS, Fernandes P, Diamond MS, Colvis CM, Menetski JP, Alvarez RM, Young JAT, Carter KL. Accelerated preclinical paths to support rapid development of COVID-19 therapeutics. Cell Host & Microbe. 2020 Nov 11;28(5):638–45. PMID: 33152278. doi: 10.1016/j.chom.2020.09.017.
  • U.S Food & Drug Administration. Coronavirus Treatment Acceleration Program (CTAP). [accessed 2023 Jan 24]. https://www.fda.gov/drugs/coronavirus-covid-19-drugs/coronavirus-treatment-acceleration-program-ctap.
  • Agostinetto R, Rossi M, Dawson J, Lim A, Simoneau MH, Boucher C, Valldorf B, Ross-Gillespie A, Jardine JG, Sok D, et al. Rapid cGMP manufacturing of COVID-19 monoclonal antibody using stable CHO cell pools. Biotechnol Bioeng. 2022 Feb;119(2):663–66. PMID: 34796474. doi:10.1002/bit.27995.
  • Kelley B. Developing therapeutic monoclonal antibodies at pandemic pace. Nat Biotechnol. 2020 May;38(5):540–45. PMID: 32317764. doi:10.1038/s41587-020-0512-5.
  • Lehman A, Muñiz VA, Chaney R, Pimentel J, Mattila J, Lawrence S. Speed and need: twin development challenges in rapid response for a SARS-CoV-2 antibody cocktail. Curr Opin Biotechnol. 2022 Aug;76:102715 . PMID: 35447504. doi:10.1016/j.copbio.2022.102715.
  • Zhang Z, Chen J, Wang J, Gao Q, Ma Z, Xu S, Zhang L, Cai J, Zhou W. Reshaping cell line development and CMC strategy for fast responses to pandemic outbreak. Biotechnol Prog. 2021 Sep;37(5):e3186. PMID: 34148295. doi:10.1002/btpr.3186.
  • Kelley B, De Moor P, Douglas K, Renshaw T, Traviglia S. Monoclonal antibody therapies for COVID-19: lessons learned and implications for the development of future products. Curr Opin Biotechnol. 2022 Dec;78:102798 . PMID: 36179406. doi:10.1016/j.copbio.2022.102798.
  • Morens DM, Fauci AS. Emerging pandemic diseases: how we got to COVID-19. Cell. 2020 Sep 3;182(5):1077–92. doi:10.1016/j.cell.2020.08.021. Erratum in: Cell. 2020 Oct 29;183(3):837. PMID: 32846157.
  • U.S. Food & Drug Administration. Emergency use authorization. [accessed 2023 Jan 26]. https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization.
  • European Medicines Agency. Conditional marketing authorization; [accessed 2023 Jan 26]. https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/conditional-marketing-authorisation.
  • Roncati L, Roncati M. Emergency use authorization (EUA), conditional marketing authorization (CMA), and the precautionary principle at the time of COVID-19 pandemic. J Public Health Policy. 2021 Sep;42(3):518–21. PMID: 34316006. doi:10.1057/s41271-021-00299-6.
  • Dye E, Sturgess A, Maheshwari G, May K, Ruegger C, Ramesh U, Tan H, Cockerill K, Groskoph J, Lacana E, et al. Examining manufacturing readiness for breakthrough drug development. Aaps Pharm Sci Tech. 2016 Jun; 17 (3): 529–38. 10.1208/s12249-015-0455-1: PMID: 26608693
  • Kumar S, Singh SK. Developability of biotherapeutics – Computational approaches. Boca Raton (FL): CRC Press; 2015. 10.1201/b19023.
  • Chennamsetty N, Helk B, Voynov V, Kayser V, Trout BL. Aggregation-prone motifs in human immunoglobulin G. J Mol Biol. 2009 Aug 14;391(2):404–13. PMID: 19527731. doi: 10.1016/j.jmb.2009.06.028.
  • Raut AS, Kalonia DS. Pharmaceutical perspective on opalescence and liquid-liquid phase separation in protein solutions. Mol Pharm. 2016 May 2;13(5):1431–44. PMID: 27017836. doi: 10.1021/acs.molpharmaceut.5b00937.
  • Champagne JC “Chasing a ghost”: Addressing the opalescence/aggregation relationship of an IgG1 antibody [ dissertation]. Durham (NH): University of New Hampshire; 2009.
  • Ripple DC, Dimitrova MN. Protein particles: what we know and what we do not know. J Pharm Sci. 2012 Oct;101(10):3568–79. PMID: 22736521. doi:10.1002/jps.23242.
  • Sankar K, Hoi KH, Yin Y, Ramachandran P, Andersen N, Hilderbrand A, McDonald P, Spiess C, Zhang Q. Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. MAbs. 2018 Nov-Dec;10(8):1281–90. PMID: 30252602. doi:10.1080/19420862.2018.1518887.
  • Yan Q, Huang M, Lewis MJ, Hu P. Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. MAbs. 2018 Aug/Sep;10(6):901–12. PMID: 29958069. doi:10.1080/19420862.2018.1478646.
  • Radchenko T, Fontaine F, Morettoni L, Zamora I. Software-aided workflow for predicting protease-specific cleavage sites using physicochemical properties of the natural and unnatural amino acids in peptide-based drug discovery. PLos One. 2019 Jan 8;14(1):e0199270. PMID: 30620739. doi: 10.1371/journal.pone.0199270.
  • Ó’fágáin C. Protein stability: enhancement and measurement. Methods Mol Biol. 2017;1485:101–29. PMID: 27730551. doi:10.1007/978-1-4939-6412-3_7.
  • Lorenz T, Fiaux J, Heitmann D, Gupta K, Kocher HP, Knopf H-P, Hartmann S Developability assessment of biologics by integrated biologics profiling. American Pharmaceutical Review. August 29, 2014. [accessed 2023 Jan 26]. https://www.americanpharmaceuticalreview.com/Featured-Articles/167439-Developability-Assessment-of-Biologics-by-Integrated-Biologics-Profiling/.
  • Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, et al. Risk-based control strategies of recombinant monoclonal antibody charge variants. Antibodies (Basel). 2022 Nov 20;11(4):73. PMID: 36412839. 10.3390/antib11040073.
  • Nowak C K, Cheung JM, Dellatore S, Katiyar A, Bhat R, Sun J, Ponniah G, Neill A, Mason B, Beck A, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs. 2017 Nov/Dec;9(8):1217–30. PMID: 28853987. doi:10.1080/19420862.2017.1368602.
  • Halley J, Chou YR, Cicchino C, Huang M, Sharma V, Tan NC, Thakkar S, Zhou LL, Al-Azzam W, Cornen S, et al. An industry perspective on forced degradation studies of biopharmaceuticals: survey outcome and recommendations. J Pharm Sci. 2020 Jan;109(1):6–21. PMID: 31563512. doi:10.1016/j.xphs.2019.09.018.
  • Eon-Duval A, Gleixner R, Valax P, Soos M, Neunstoecklin B, Morbidelli M, Broly H. Quality by design applied to a Fc-fusion protein: a case study. In: Chamow S, Ryll T, Lowman H Farson D, editors. Therapeutic Fc-fusion proteins. Weinheim:Wiley; 2013. pp. 155–89. 10.1002/9783527675272.ch06
  • Mire-Sluis T, Kuhn B, Monica T Development of integrated control strategies and PV plans for US and European filings. Presented at CASSS CMC Strategy Forum Europe; 2014 May 5-7; Sorrento (It).
  • Woodcock J. The concept of pharmaceutical quality. American Pharma Rev. 2004 Nov;7(6):10–15.
  • O’Callaghan PM, Berthelot ME, Young RJ, Graham JW, Racher AJ, Aldana D. Diversity in host clone performance within a Chinese hamster ovary cell line. Biotechnol Prog. 2015 Sep-Oct;31(5):1187–200. PMID: 25918883. doi:10.1002/btpr.2097.
  • Reinhart D, Damjanovic L, Kaisermayer C, Sommeregger W, Gili A, Gasselhuber B, Castan A, Mayrhofer P, Grünwald-Gruber C, Kunert R. Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: cHO expression hosts favor either mAb production or biomass synthesis. Biotechnol J. 2019 Mar;14(3):e1700686. PMID: 29701329. doi:10.1002/biot.201700686.
  • Lakshmanan M, Kok YJ, Lee AP, Kyriakopoulos S, Lim HL, Teo G, Poh SL, Tang WQ, Hong J, Tan AH, et al. Multi-omics profiling of CHO parental hosts reveals cell line-specific variations in bioprocessing traits. Biotechnol Bioeng. 2019 Sep;116(9):2117–29. PMID: 31066037. doi:10.1002/bit.27014.
  • Wang B, Albanetti T, Miro-Quesada G, Flack L, Li L, Klover J, Burson K, Evans K, Ivory W, Bowen M, et al. High-throughput screening of antibody-expressing CHO clones using an automated shaken deep-well system. Biotechnol Prog. 2018;34(6):1460–71. doi:10.1002/btpr.2721. PMID: 30298994.
  • Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. Drug Discov Today Technol. 2020;38:25–34. PMID: 34895638. doi:10.1016/j.ddtec.2021.02.003.
  • Fan L, Frye CC, Racher AJ. The use of glutamine synthetase as a selection marker: recent advances in Chinese hamster ovary cell line generation processes. Pharm Bioprocess. 2013;1(5):487–502. https://www.openaccessjournals.com/articles/the-use-of-glutamine-synthetase-as-a-selection-marker-recent-advances-in-chinese-hamster-ovary-cell-line-generation-proc.pdf
  • Ha TK, Òdena A, Karottki KJC, Kim CL, Hefzi H, Lee GM, Faustrup Kildegaard H, Nielsen LK, Grav LM, Lewis NE. Enhancing CHO cell productivity through a dual selection system using Aspg and Gs in glutamine free medium. Biotechnol Bioeng. 2022. PMID: 36562657. doi:10.1002/bit.28318.
  • International Conference for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Derivation and characterisation of cell substrates used for production of biotechnological/biological products Q5D; 1997. [accessed 2023 Jan 26]. https://database.ich.org/sites/default/files/Q5D%20Guideline.pdf.
  • International Conference for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin Q5A(R1); 1999. [accessed 2023 Jan 26]. https://database.ich.org/sites/default/files/Q5A%28R1%29%20Guideline_0.pdf.
  • Code of Federal Regulations. Title 9, Chapter 1, Subchapter E, Part 113, §113.53 requirements for ingredients of animal origin used for production of biologics; 2014. [accessed 2023 Jan 26]. https://www.ecfr.gov/current/title-9/chapter-I/subchapter-E/part-113/subject-group-ECFRa4cbfb362190bc0/section-113.53.
  • Wurm MJ, Wurm FM. Naming CHO cells for bio-manufacturing: genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names. Biotechnol J. 2021;16(7):e2100165. doi:10.1002/biot.202100165. PMID: 34050613.
  • Davies SL, Lovelady CS, Grainger RK, Racher AJ, Young RJ, James DC. Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng. 2013;110(1):260–74. doi:10.1002/bit.24621. PMID: 22833427.
  • Tharmalingam T, Barkhordarian H, Tejeda N, Daris K, Yaghmour S, Yam P, Lu F, Goudar C, Munro T, Stevens J. Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol Prog. 2018;34(3):613–23. doi:10.1002/btpr.2666. PMID: 29882350.
  • Patel NA, Anderson CR, Terkildsen SE, Davis RC, Pack LD, Bhargava S, Clarke HRG. Antibody expression stability in CHO clonally derived cell lines and their subclones: role of methylation in phenotypic and epigenetic heterogeneity. Biotechnol Prog. 2018;34(3):635–49. doi:10.1002/btpr.2655. PMID: 29717549.
  • Ko P, Misaghi S, Hu Z, Zhan D, Tsukuda J, Yim M, Sanford M, Shaw D, Shiratori M, Snedecor B, et al. Probing the importance of clonality: single cell subcloning of clonally derived CHO cell lines yields widely diverse clones differing in growth, productivity, and product quality. Biotechnol Prog. 2018;34(3):624–34. doi:10.1002/btpr.2594. PMID: 29226566.
  • Fieder J, Schulz P, Gorr I, Bradl H, Wenger T. A single-step FACS sorting strategy in conjunction with fluorescent vital dye imaging efficiently assures clonality of biopharmaceutical production cell lines. Biotechnol J. 2017;12(6):1700002. PMID: 28371300. doi:10.1002/biot.201700002.
  • Zingaro K, Shaw D, Carson J, Mayer-Bartschmid A, Bender C, Alves C, Mcvey D, Qian NX, Wei Q, Laird MW, et al. Implementation of plate imaging for demonstration of monoclonality in biologics manufacturing development. PDA J Pharm Sci Technol. 2018;72(4):438–50. doi:10.5731/pdajpst.2018.008789. PMID: 29669815.
  • Welch JT, Arden NS. Considering “clonality”: a regulatory perspective on the importance of the clonal derivation of mammalian cell banks in biopharmaceutical development. Biologicals. 2019;62:16–21. PMID: 31588011. doi:10.1016/j.biologicals.2019.09.006.
  • Stettler M, Minakowski M. Going from DNA to IND in 11 months. Lonza; 2022. [accessed 2023 Jan 26]. https://dam.lonza.com/dmm3bwsv3/assetstream.aspx?assetid=15476&mediaformatid=10061&destinationid=10016.
  • Wright C, Alves C, Kshirsagar R, Pieracci J, Estes S. Leveraging a CHO cell line toolkit to accelerate biotherapeutics into the clinic. Biotechnol Prog. 2017;33(6):1468–75. doi:10.1002/btpr.2548. PMID: 28842948.
  • Stuible M, van Lier F, Croughan MS, Durocher Y. Beyond preclinical research: production of CHO-derived biotherapeutics for toxicology and early-phase trials by transient gene expression or stable pools. Curr Opin Chem Eng. 2018;22:145–51. doi:10.1016/j.coche.2018.09.010.
  • Rita Costa A, Elisa Rodrigues M, Henriques M, Azeredo J, Oliveira R. Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm. 2010 Feb;74(2):127–38. PMID: 19853660. doi:10.1016/j.ejpb.2009.10.002.
  • de la Cruz Edmonds MC, Tellers M, Chan C, Salmon P, Robinson DK, Markusen J, Edmonds MCDLC. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol Biotechnol. 2006;34(2):179–90. PMID: 17172663. doi:10.1385/mb:34:2:179.
  • Jiang Z, Huang Y, Sharfstein ST. Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog. 2006;22(1):313–18. doi:10.1021/bp0501524. PMID: 16454525.
  • Lin PC, Chan KF, Kiess IA, Tan J, Shahreel W, Wong SY, Song Z. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. MAbs. 2019 Jul;11(5):965–76. PMID: 31043114. doi:10.1080/19420862.2019.1612690.
  • Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol Bioeng. 2012;109(4):1007–15. doi:10.1002/bit.24365. PMID: 22068567.
  • Noh SM, Shin S, Lee GM. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. Sci Rep. 2018;8(1):5361. PMID: 29599455. doi:10.1038/s41598-018-23720-9.
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–98. PMID: 15529164. doi:10.1038/nbt1026.
  • Carver J, Ng D, Zhou M, Ko P, Zhan D, Yim M, Shaw D, Snedecor B, Laird MW, Lang S, et al. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnol Prog. 2020;36(4):e2967. doi:10.1002/btpr.2967. PMID: 31965756.
  • Chi X, Zheng Q, Jiang R, Chen-Tsai RY, Kong LJ. A system for site-specific integration of transgenes in mammalian cells. PLos One. 2019;14(7):e0219842. doi:10.1371/journal.pone.0219842. PMID: 31344144.
  • Nehlsen K, Schucht R, da Gama-Norton L, Krömer W, Baer A, Cayli A, Hauser H, Wirth D. Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol. 2009;9:100. PMID: 20003421. doi:10.1186/1472-6750-9-100.
  • Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol. 2020;40(6):833–51. doi:10.1080/07388551.2020.1768043. PMID: 32456474.
  • Mikkelsen JG, Yant SR, Meuse L, Huang Z, Xu H, Kay MA. Helper-Independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther. 2003;8(4):654–65. doi:10.1016/s1525-0016(03)00216-8. PMID: 14529839.
  • Miskey C, Izsvák Z, Plasterk RH, Ivics Z. The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res. 2003;31(23):6873–81. doi:10.1093/nar/gkg910. PMID: 14627820.
  • Rajendra Y, Balasubramanian S, McCracken NA, Norris DL, Lian Z, Schmitt MG, Frye CC, Barnard GC. Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies. Biotechnol Prog. 2017;33(6):1436–48. doi:10.1002/btpr.2495. PMID: 28547769.
  • Rajendran S, Balasubramanian S, Webster L, Lee M, Vavilala D, Kulikov N, Choi J, Tang C, Hunter M, Wang R, et al. Accelerating and de-risking CMC development with transposon-derived manufacturing cell lines. Biotechnol Bioeng. 2021;118(6):2301–11. doi:10.1002/bit.27742. PMID: 33704772.
  • Balasubramanian S, Rajendra Y, Baldi L, Hacker DL, Wurm FM. Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol Bioeng. 2016;113(6):1234–43. doi:10.1002/bit.25888. PMID: 26616356.
  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 1993;90(17):8033–37. doi:10.1073/pnas.90.17.8033. PMID: 8396259.
  • Bleck GT. An alternative method for the rapid generation of stable, high-expressing mammalian cell lines. BioProcess J. 2006;5(4):36–42. doi:10.12665/J54.Bleck.
  • Bleck GT Flexible methodology for developing mammalian cell lines. BioPharm International. 2006 Feb 9; 2006 1. [accessed 2023 Jan 26]. https://www.biopharminternational.com/view/flexible-methodology-developing-mammalian-cell-lines.
  • Catalent Biologics. Catalent Biologics launches new GPEx® Lightning cell line expression technology to shorten drug substance development timelines by up to three months; 2021. [accessed 2023 Jan 26]. https://biologics.catalent.com/catalent-news/catalent-biologics-launches-new-gpex-lightning-cell-line-expression-technology-to-shorten-drug-substance-development-timelines-by-up-to-three-months/.
  • Li J, Wei S, Cao C, Chen K, He H, Gao G. Retrovectors packaged in CHO cells to generate GLP-1-Fc stable expression CHO cell lines. Electron J Biotechnol. 2019;41:56–59. PMID: 32288149. doi:10.1016/j.ejbt.2019.07.002.
  • Barone PW, Wiebe ME, Leung JC, Hussein ITM, Keumurian FJ, Bouressa J, Brussel A, Chen D, Chong M, Dehghani H, et al. Viral contamination in biologic manufacture and implications for emerging therapies. Nat Biotechnol. 2020;38(5):563–72. PMID: 32341561. doi:10.1038/s41587-020-0507-2.
  • Dahodwala H, Lee KH. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol. 2019;60:128–37. PMID: 30826670. doi:10.1016/j.copbio.2019.01.011.
  • Li H, Chen K, Wang Z, Li D, Lin J, Yu C, Yu F, Wang X, Huang L, Jiang C, et al. Genetic analysis of the clonal stability of Chinese hamster ovary cells for recombinant protein production. Mol Biosyst. 2016;12(1):102–09. doi:10.1039/c5mb00627a. PMID: 26563441.
  • Yang W, Zhang J, Xiao Y, Li W, Wang T. Screening strategies for high-yield Chinese hamster ovary cell clones. Front Bioeng Biotechnol. 2022;10:858478. PMID: 35782513. doi:10.3389/fbioe.2022.858478.
  • Bolisetty P, Tremml G, Xu S, Khetan A. Enabling speed to clinic for monoclonal antibody programs using a pool of clones for IND-enabling toxicity studies. MAbs. 2020;12(1):1763727. PMID: 32449878. doi:10.1080/19420862.2020.1763727.
  • Wolf M, Bielser J, Morbidelli M. Perfusion cell culture processes for biopharmaceuticals: process development, design. In: and scale-up (Cambridge series in chemical engineering. Cambridge: Cambridge University Press; 2020. pp. 198–202. doi:10.1017/9781108847209.
  • The Dish. Platform approach to accelerating cell line and process development. Cell Culture Dish; 2020 Dec 3 [accessed 2023 Jan 26]. https://cellculturedish.com/platform-approach-to-accelerating-cell-line-and-process-development/.
  • He L, Winterrowd C, Kadura I, Frye C. Transgene copy number distribution profiles in recombinant CHO cell lines revealed by single cell analyses. Biotechnol Bioeng. 2012;109(7):1713–22. doi:10.1002/bit.24428. PMID: 22234778.
  • Moritz B, Becker PB, Göpfert U. CMV promoter mutants with a reduced propensity to productivity loss in CHO cells. Sci Rep. 2015;5:16952. PMID: 26581326. doi:10.1038/srep16952.
  • Romanova N, Noll T. Engineered and natural promoters and chromatin-modifying elements for recombinant protein expression in CHO cells. Biotechnol J. 2018;13(3):e1700232. doi:10.1002/biot.201700232. PMID: 29145694.
  • U.S Food & drug administration. Points to consider in the manufacture and testing of monoclonal antibody products for human use; 1997. [accessed 2023 Jan 26]. https://www.fda.gov/media/76798/download.
  • European Medicines Agency. Guideline on development, production, characterisation and specification for monoclonal antibodies and related products; 2016 Jul 21 [accessed 2023 Jan 26]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-development-production-characterisation-specification-monoclonal-antibodies-related_en.pdf.
  • International Conference for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Development and manufacture of drug substances (chemical entities and biotechnological/biological entities Q11; 2012. [accessed 2023 Jan 26]. https://database.ich.org/sites/default/files/Q11%20Guideline.pdf.
  • International Conference for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6(R1). 2011 [accessed 2023 Jan 26]. https://database.ich.org/sites/default/files/S6_R1_Guideline_0.pdf.
  • Hu Z, Hsu W, Pynn A, Ng D, Quicho D, Adem Y, Kwong Z, Mauger B, Joly J, Snedecor B, et al. A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies. Biotechnol Prog. 2017;33(6):1449–55. doi:10.1002/btpr.2467. PMID: 28371489.
  • Fan L, Rizzi G, Bierilo K, Tian J, Yee JC, Russell R, Das TK. Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines. Biotechnol Prog. 2017;33(6):1456–62. doi:10.1002/btpr.2477. PMID: 28393481.
  • Scarcelli JJ, Shang TQ, Iskra T, Allen MJ, Zhang L. Strategic deployment of CHO expression platforms to deliver Pfizer’s Monoclonal Antibody Portfolio. Biotechnol Prog. 2017;33(6):1463–67. doi:10.1002/btpr.2493. PMID: 28480558.
  • Zhang L, Inniss MC, Han S, Moffat M, Jones H, Zhang B, Cox WL, Rance JR, Young RJ. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog. 2015;31(6):1645–56. doi:10.1002/btpr.2175. PMID: 26399954.
  • Munro TP, Le K, Le H, Zhang L, Stevens J, Soice N, Benchaar SA, Hong RW, Goudar CT. Accelerating patient access to novel biologics using stable pool-derived product for non-clinical studies and single clone-derived product for clinical studies. Biotechnol Prog. 2017;33(6):1476–82. doi:10.1002/btpr.2572. PMID: 29055113.
  • Vazquez-Lombardi R, Nevoltris D, Luthra A, Schofield P, Zimmermann C, Christ D. Transient expression of human antibodies in mammalian cells. Nat Protoc. 2018;13(1):99–117. PMID: 29240734. doi:10.1038/nprot.2017.126.
  • Budge JD, Young RJ, Smales CM. Engineering of Chinese hamster ovary cells with NDPK-A to enhance DNA nuclear delivery combined with EBNA1 plasmid maintenance gives improved exogenous transient reporter, mAb and SARS-CoV-2 spike protein expression. Front Bioeng Biotechnol. 2021;9:679448. PMID: 34150735. doi:10.3389/fbioe.2021.679448.
  • Xu G, Yu C, Wang W, Fu C, Liu H, Zhu Y, Li Y, Liu C, Fu Z, Wu G, et al. Quality comparability assessment of a SARS-CoV-2-neutralizing antibody across transient, mini-pool-derived and single-clone CHO cells. MAbs. 2022;14(1):2005507. PMID: 34923915. doi:10.1080/19420862.2021.2005507.
  • Rodriguez-Conde S, Inman S, Lindo V, Amery L, Tang A, Okorji-Obike U, Du W, Bosch BJ, Wichgers Schreur PJ, Kortekaas J, et al. Suitability of transiently expressed antibodies for clinical studies: product quality consistency at different production scales. MAbs. 2022;14(1):2052228. PMID: 35323099. doi:10.1080/19420862.2022.2052228.
  • Novak R Regulatory perspective on the evaluation of clonality of mammalian cell banks. Paper presented at: CASSS CMC Strategy Forum North America 2017; 2017 Jan 23; Washington DC.
  • Wurm FM, Wurm MJ. Cloning of CHO cells, productivity and genetic stability – a discussion. Processes. 2017;5(2):20. doi:10.3390/pr5020020.
  • Wurm FM. CHO quasispecies – Implications for manufacturing processes. Processes. 2013;1(3):296–311. doi:10.3390/pr1030296.
  • Frye C, Deshpande R, Estes S, Francissen K, Joly J, Lubiniecki A, Munro T, Russell R, Wang T, Anderson K. Industry view on the relative importance of “clonality” of biopharmaceutical-producing cell lines. Biologicals. 2016;44(2):117–22. PMID: 26852257. doi:10.1016/j.biologicals.2016.01.001.
  • Kao FT, Puck TT. Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci U S A. 1968;60(4):1275–81. doi:10.1073/pnas.60.4.1275. PMID: 5244736.
  • Adair GM, Stallings RL, Siciliano MJ. Chromosomal rearrangements and gene expression in CHO cells: mapping of alleles for eight enzyme loci on CHO chromosomes Z3, Z4, Z5, and Z7. Somat Cell Mol Genet. 1984;10(3):283–95. PMID: 6585972. doi:10.1007/BF01535250.
  • Vcelar S, Jadhav V, Melcher M, Auer N, Hrdina A, Sagmeister R, Heffner K, Puklowski A, Betenbaugh M, Wenger T, et al. Karyotype variation of CHO host cell lines over time in culture characterized by chromosome counting and chromosome painting. Biotechnol Bioeng. 2018;115(1):165–73. doi:10.1002/bit.26453. PMID: 28921524.
  • Rouiller Y, Kleuser B, Toso E, Palinksy W, Rossi M, Rossatto P, Barberio D, Broly H. Reciprocal translocation observed in end-of-production cells of a commercial CHO-Based Process. PDA J Pharm Sci Technol. 2015;69(4):540–52. PMID: 26242789. doi:10.5731/pdajpst.2015.01063.
  • U.S Food and Drug Administration. Guidance for industry - Process validation: general principles and practices; 2011 [accessed 2023 Jan 26]. https://www.fda.gov/files/drugs/published/Process-Validation–General-Principles-and-Practices.pdf.
  • Bradl H, Bechmann J, Mueller MM, Schulz P, Wucherpfennig T, Greulich B. Platform approach speeds process development. BioPharm International. 2016;29(4):20–25. https://www.biopharminternational.com/view/platform-approach-speeds-process-development
  • Krause SO. Using analytical platform technologies to support accelerated product development-concept review and case study. PDA J Pharm Sci Technol. 2022;76(3):248–62. doi:10.5731/pdajpst.2021.012647. PMID: 34663756.
  • Krause SO. PCMO L01-setting specifications for biological investigational medicinal products. PDA J Pharm Sci Technol. 2015;69(5):569–89. doi:10.5731/pdajpst.2015.01065. PMID: 26429107.
  • Kretsinger J, Frantz N, Hart SA, Kelley WP, Kitchen B, Novick S, Rellahan B, Stranges D, Stroop CJM, Yin P, et al. Expectations for phase-appropriate drug substance and drug product specifications for early-stage protein therapeutics. J Pharm Sci. 2019;108(4):1442–52. doi:10.1016/j.xphs.2018.11.042. PMID: 30528942.
  • Xu J, Ou J, McHugh KP, Borys MC, Khetan A. Upstream cell culture process characterization and in-process control strategy development at pandemic speed. MAbs. 2022;14(1):2060724. PMID: 35380922. doi:10.1080/19420862.2022.2060724.
  • Duivelshof B, Zöldhegyi A, Guillarme D, Lauber M, Fekete S. Expediting the chromatographic analysis of COVID-19 antibody therapeutics with ultra-short columns, retention modeling and automated method development. J Pharm Biomed Anal. 2022;221:115039. PMID: 36115204. doi:10.1016/j.jpba.2022.115039.
  • Millán-Martín S, Jakes C, Carillo S, Rogers R, Ren D, Bones J. Comprehensive multi-attribute method workflow for biotherapeutic characterization and current good manufacturing practices testing. Nat Protoc. 2022 Dec 16;18(4):1056–89. PMID: 36526726. 10.1038/s41596-022-00785-5.
  • Evans AR, Hebert AS, Mulholland J, Lewis MJ, Hu P. ID-MAM: a validated identity and multi-attribute monitoring method for commercial release and stability testing of a bispecific antibody. Anal Chem. 2021 Jul 6;93(26):9166–73. PMID: 34161073. doi: 10.1021/acs.analchem.1c01029.
  • Jakes C, Millán-Martín S, Carillo S, Scheffler K, Zaborowska I, Bones J. Tracking the behavior of monoclonal antibody product quality attributes using a multi-attribute method workflow. J Am Soc Mass Spectrom. 2021 Aug 4;32(8):1998–2012. PMID: 33513021. doi: 10.1021/jasms.0c00432.
  • Rogstad S, Yan H, Wang X, Powers D, Brorson K, Damdinsuren B, Lee S. Multi-attribute method for quality control of therapeutic proteins. Anal Chem. 2019 Nov 19;91(22):14170–77. PMID: 31618017. doi: 10.1021/acs.analchem.9b03808.
  • Guan X, Eris T, Zhang L, Ren D, Ricci MS, Thiel T, Goudar CT. A high-resolution multi-attribute method for product characterization, process characterization, and quality control of therapeutic proteins. Anal Biochem. 2022 Apr 15;643:114575. doi:10.1016/j.ab.2022.114575. PMID: 35085546.
  • Carillo S, Criscuolo A, Füssl F, Cook K, Bones J. Intact multi-attribute method (iMAM): a flexible tool for the analysis of monoclonal antibodies. Eur J Pharm Biopharm. 2022 Aug;177:241–48 . PMID: 35840072. doi:10.1016/j.ejpb.2022.07.005.
  • EFPIA. Use of multi attribute method by mass spectrometry as a QC release and stability tool for biopharmaceuticals – Regulatory considerations. 2022 [accessed 2023 Jan 26]. https://www.efpia.eu/media/676706/efpia-regulatory-position-paper_mam-as-qc-tool_final.pdf.
  • Wisher M, Boumlic A, Asher D, Pattnaik P Preventing microbial contamination of viral vaccines and vectors. PharmTech; 2018 Oct 3. https://www.pharmtech.com/view/preventing-microbial-contamination-viral-vaccines-and-vectors.
  • International Conference for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin Q5A(R2); September 29, 2022. [Accessed 2023, January 26]. https://database.ich.org/sites/default/files/ICH_Q5A%28R2%29_Step2_draft_Guideline_2022_0826.pdf/.
  • Barone PW, Keumurian FJ, Neufeld C, Koenigsberg A, Kiss R, Leung J, Wiebe M, Ait-Belkacem R, Azimpour Tabrizi C, Barbirato C, et al. Historical evaluation of the in vivo adventitious virus test and its potential for replacement with next generation sequencing (NGS). Biologicals. 2023 Jan;6:101661. PMID: 36621353. 10.1016/j.biologicals.2022.11.003.
  • European Medicines Agency. Guideline on the principles of regulatory acceptance of 3Rs (replacement, reduction, refinement) testing approaches. 2016 [accessed 2023 Jan 26]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-principles-regulatory-acceptance-3rs-replacement-reduction-refinement-testing-approaches_en.pdf.
  • International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Q5A(R2) Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin; 2022 Sep 29. [Accessed 2023, Jan 26]. https://database.ich.org/sites/default/files/ICH_Q5A%28R2%29_Step2_draft_Guideline_2022_0826.pdf.
  • Müllberg J Rapid methods for adventitious virus detection acceleration of clinical timelines/”speed to patient”. Amer Pharm Rev; 2020 Oct 19. [accessed 2023, Jan 26]. https://www.americanpharmaceuticalreview.com/Featured-Articles/569340-Rapid-Methods-for-Adventitious-Virus-Detection-Acceleration-of-Clinical-Timelines-Speed-to-Patient/.
  • Schwantes A, Specht R, Chen Q. Proceedings of the 2017 viral clearance symposium, session 4: submission strategies. PDA J Pharm Sci Technol. 2018 Sep-Oct;72(5):498–510. PMID: 30030357. doi:10.5731/pdajpst.2018.009142.
  • Specht R, Bakhshayeshi M. Session 4.1: case studies of application of generic claims and QbD for viral clearance. PDA J Pharm Sci Technol. 2016 Sep 10;70(5):462–69. PMID: 27516486. doi: 10.5731/pdajpst.2016.006957.
  • International Conference for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Evaluation for stability data Q1E; 2003. [accessed 2023 Jan 26]. https://database.ich.org/sites/default/files/Q1E%20Guideline.pdf.
  • Ogilvie R Supporting accelerated development – stability approaches. Paper presented at: Workshop with stakeholders on support to quality development in early access approaches (i.e. PRIME, Breakthrough Therapies). 2018 Nov 26: London (UK). https://www.ema.europa.eu/en/documents/report/report-workshop-stakeholders-support-quality-development-early-access-approaches-ie-prime_en.pdf.
  • Kuzman D, Bunc M, Ravnik M, Reiter F, Žagar L, Bončina M. Long-term stability predictions of therapeutic monoclonal antibodies in solution using Arrhenius-based kinetics. Sci Rep. 2021 Oct 15;11(1):20534. PMID: 34654882. 10.1038/s41598-021-99875-9.
  • Evers A, Clénet D, Pfeiffer-Marek S. Long-term stability prediction for developability assessment of biopharmaceutics using advanced kinetic modeling. Pharmaceutics. 2022 Feb 8;14(2):375. PMID: 35214107. 10.3390/pharmaceutics14020375.
  • European Medicines Agency. Toolbox guidance on scientific elements and regulatory tools to support quality data packages for PRIME and certain marketing authorisation applications targeting an unmet medical need; 2022 Apr 22. [accessed 2023 Jan 26]. www.ema.europa.eu/en/documents/scientific-guideline/toolbox-guidance-scientific-elements-regulatory-tools-support-quality-data-packages-prime-certain_en.pdf.
  • European Medicines Agency. COVID-19: how EMA fast-tracks development support and approval of medicines and vaccines; 2020 May 4. [accessed 2023 Jan 26]. https://www.ema.europa.eu/en/documents/press-release/covid-19-how-ema-fast-tracks-development-support-approval-medicines-vaccines_en.pdf.
  • Deeks ED. Casirivimab/Imdevimab: first approval. Drugs. 2021;81(17):2047–55. PMID: 34716907. doi:10.1007/s40265-021-01620-z.
  • Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 2021;384(3):229–37. PMID: 33113295. doi:10.1056/NEJMoa2029849.
  • Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, Sarkis E, Solis J, Zheng H, Scott N, et al. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody Sotrovimab. N Engl J Med. 2021;385(21):1941–50. PMID: 34706189. doi:10.1056/NEJMoa2107934.
  • Heo YA. Sotrovimab: first approval. Drugs. 2022;82(4):477–84. PMID: 35286623. doi:10.1007/s40265-022-01690-7.
  • Keam SJ. Tixagevimab + Cilgavimab: first approval. Drugs. 2022;82(9):1001–10. PMID: 35727563. doi:10.1007/s40265-022-01731-1.
  • Dougan M, Azizad M, Chen P, Feldman B, Frieman M, Igbinadolor A, Kumar P, Morris J, Potts J, Baracco L, et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19; 2022 Mar 12. Accessed 2023 Jan 26. https://www.medrxiv.org/content/10.1101/2022.03.10.22272100v1
  • Streinu-Cercel A, Săndulescu O, Preotescu LL, Kim JY, Kim YS, Cheon S, Jang YR, Lee SJ, Kim SH, Chang I, et al. Efficacy and safety of regdanvimab (CT-P59): a phase 2/3 randomized, double-blind, placebo-controlled trial in outpatients with mild-to-moderate coronavirus disease 2019. Open Forum Infect Dis. 2022;9(4):ofac053. doi:10.1093/ofid/ofac053. PMID: 35295819.
  • SM H. Amubarvimab/Romlusevimab: first approval. Drugs. 2022;82(12):1327–31. doi:10.1007/s40265-022-01759-3. PMID: 35997943.
  • Dong R, Jiang L, Yang T, Wang C, Zhang Y, Chen X, Xie J, Guo Y, Weng L, Kang Y, et al. Efficacy and safety of SARS-CoV-2 neutralizing antibody JS016 in hospitalized Chinese patients with COVID-19: a phase 2/3, multicenter, randomized, open-label, controlled trial. Antimicrob Agents Chemother. 2022;66(3):e0204521. PMID: 35191746. doi:10.1128/AAC.02045-21.
  • Cox M, Peacock, TP, Harvey, WT, Hughes, J, Wright, DW; Willett, BJ, Thomson, E, Gupta, RK, Peacock, SJ. COVID-19 Genomics UK (COG-UK) Consortium et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol. 2023 Feb; 21(2):112–24. PMID: 36307535. 10.1038/s41579-022-00809-7.
  • Tao K, Tzou PL, Kosakovsky Pond SL, Ioannidis JPA, Shafer RW. Susceptibility of SARS-CoV-2 omicron variants to therapeutic monoclonal antibodies: systematic review and meta-analysis. Microbiol Spectr. 2022;10(4):e0092622. doi:10.1128/spectrum.00926-22. PMID: 35700134.
  • Arora P, Kempf A, Nehlmeier I, Schulz SR, Jäck HM, Pöhlmann S, Hoffmann M. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect Dis. 2023;23(1):22–23. doi:10.1016/S1473-3099(22)00733-2. Erratum in: Lancet Infect Dis. 2022 Nov 29; PMID: 36410372.
  • European Medicines Agency. ETF statement on the loss of activity of anti-spike protein monoclonal antibodies due to emerging SARS-COV-2 variants of concern; 2022 Dec 9. [accessed 2023 Jan 26]. https://www.ema.europa.eu/en/documents/public-statement/etf-statement-loss-activity-anti-spike-protein-monoclonal-antibodies-due-emerging-sars-cov-2_en.pdf.
  • Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol. 2022;94(6):2376–83. doi:10.1002/jmv.27643. PMID: 35118687.
  • Li JZ, Gandhi RT. Realizing the potential of anti-SARS-CoV-2 monoclonal antibodies for COVID-19 management. JAMA. 2022;327(5):427–29. doi:10.1001/jama.2021.19994. PMID: 35029644.
  • Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH, Ke FY, Su SC, Liang KH, Yuan JP, et al. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci. 2022;29(1):68. PMID: 36096815. doi:10.1186/s12929-022-00852-9.
  • Lu RM, Liang KH, Chiang HL, Hsu FF, Lin HAT, Chen WY, Ke FY, Kumari M, Chou YC, Wu HC. Broadly neutralizing antibodies against Omicron variants of SARS-COV-2 derived from mRNA-lipid nanoparticle-immunized mice. bioRxiv 2022 04 19 488843. 10.1101/2022.04.19.488843.
  • Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive immunotherapy against SARS-CoV-2: from plasma-based therapy to single potent antibodies in the race to stay ahead of the variants. BioDrugs. 2022;36(3):231–323. PMID: 35476216. doi:10.1007/s40259-022-00529-7.
  • Fang Y, Sun P, Xie X, Du M, Du F, Ye J, Kalveram BK, Plante JA, Plante KS, Li B, et al. An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike epitope outside the receptor binding motif. Sci Immunol. 2022;7(76):eabp9962. doi:10.1126/sciimmunol.abp9962. PMID: 35926067.
  • Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect Dis. 2022; 22(11):e311–e26. doi: 10.1016/S1473-3099(22)00311-5. Erratum in: Lancet Infect Dis. 2022; 22(9):e239. PMID: 35803289.
  • Popkin ME, Goese M, Wilkinson D, Finnie S, Flanagan T, Campa C, Clinch A, Teasdale A, Lennard A, Cook G, et al. Chemistry manufacturing and controls development, industry reflections on manufacture, and supply of pandemic therapies and vaccines. Aaps J. 2022;24(6):101. PMID: 36168002. doi:10.1208/s12248-022-00751-9.
  • ICMRA. ICMRA-industry virtual workshop report on enabling manufacturing capacity in the COVID-19 pandemic; 8 to9 July 2021. [accessed 2023 Jan 26]. https://icmra.info/drupal/sites/default/files/2021-10/covid-19_manufacturing_capacity_ws_report.pdf.
  • U.S Food and Drug Administration. Guidance for Industry - Development of monoclonal antibody products targeting SARS-Cov-2, including addressing the impact of emerging variants, during the COVID-19 public health emergency; 2021 Feb. [accessed 2023 Jan 26]. https://www.fda.gov/media/146173/download.
  • European Medicines Agency. Meeting report: workshop with stakeholders on support to quality development in early access approaches (i.e. PRIME, Breakthrough therapies); 2019 Jul 25. [accessed 2023 Jan 26]. https://www.ema.europa.eu/en/documents/report/report-workshop-stakeholders-support-quality-development-early-access-approaches-ie-prime_en.pdf/.
  • Cox EM, Edmund AV, Kratz E, Lockwood SH, Shankar A. Regulatory affairs 101: introduction to expedited regulatory pathways. Clin Transl Sci. 2020 May;13(3):451–61. PMID: 31909876. doi:10.1111/cts.12745.
  • Simpson S, Chakrabarti A, Robinson D, Chirgwin K, Lumpkin M. Navigating facilitated regulatory pathways during a disease X pandemic. NPJ Vaccines. 2020 Oct 23;5:101. doi:10.1038/s41541-020-00249-5. PMID: 33110630.
  • Khan AS, Theuns S, Mallet L, Cirefice G, Bhuller R, Goios A, Suri R, Neels P. IABS/DCVMN webinar on next generation sequencing. Biologicals. 2022;81:S1045-1056(22)00081–1. PMID: 36543633. doi:10.1016/j.biologicals.2022.12.001.
  • Ritskes-Hoitinga M, Barella Y, Kleinhout-Vliek T. The promises of speeding up: changes in requirements for animal studies and alternatives during COVID-19 vaccine approval-a case study. Animals (Basel). 2022 Jul 5;12(13):1735. PMID: 35804634. doi: 10.3390/ani12131735.
  • Raimondi MT, Donnaloja F, Barzaghini B, Bocconi A, Conci C, Parodi V, Jacchetti E, Carelli S. Bioengineering tools to speed up the discovery and preclinical testing of vaccines for SARS-CoV-2 and therapeutic agents for COVID-19. Theranostics. 2020 May 27;10(16):7034–52. PMID: 32641977. 10.7150/thno.47406.
  • Sanders M, Mainil R, Chahim W. Introducing a new concept for value-driven acceleration in biopharma development. BioPharm International. 2022 Oct 2;35(10):34–41. https://www.biopharminternational.com/view/introducing-a-new-concept-for-value-driven-acceleration-in-biopharma-development.