3,646
Views
0
CrossRef citations to date
0
Altmetric
Report

Understanding the structure–property relationship of bispecific monoclonal antibodies with Fc site-specific substitutions

ORCID Icon, ORCID Icon, , , , , , & show all
Article: 2228006 | Received 19 Jan 2023, Accepted 16 Jun 2023, Published online: 25 Jun 2023

References

  • Brinkmann U, Kontermann RE. Bispecific antibodies: bispecific antibodies have emerged as molecules with a multitude of talents. Science. 2021;372(6545):916–10. doi:10.1126/science.abg1209.
  • Labrijn AF, Janmaat ML, Reichert JM, Parren PW. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608. doi:10.1038/s41573-019-0028-1.
  • Kufer P, Lutterbüse R, Baeuerle PA. A revival of bispecific antibodies. Trends Biotechnol. 2004;22(5):238–44. doi:10.1016/j.tibtech.2004.03.006.
  • Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, et al. Tumor regression in cancer patients by very low doses of a T cell–engaging antibody. Science. 2008;321(5891):974–77. doi:10.1126/science.1158545.
  • Van Der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martínez-Martínez P, Vermeulen E, Den Bleker TH, Wiegman L, Vink T, Aarden LA, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317(5844):1554–57. doi:10.1126/science.1144603.
  • Van Roy M, Ververken C, Beirnaert E, Hoefman S, Kolkman J, Vierboom M, Breedveld E, T Hart B, Poelmans S, Bontinck L, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 2015;7(1):1–6. doi:10.1186/s13075-015-0651-0.
  • Khan SN, Sok D, Tran K, Movsesyan A, Dubrovskaya V, Burton DR, Wyatt RT, Silvestri G. Targeting the HIV-1 spike and coreceptor with bi-and trispecific antibodies for single-component broad inhibition of entry. J Virol. 2018;92(18):e00384–18. doi:10.1128/JVI.00384-18.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9(2):182–212. doi:10.1080/19420862.2016.1268307.
  • Ellerman D, Scheer JM. Generation of bispecific antibodies by chemical conjugation. In: Bispecific Antibodies. Berlin: Springer Berlin Heidelberg; 2011. pp. 47–63. doi:10.1007/978-3-642-20910-9_3.
  • Doppalapudi VR, Huang J, Liu D, Jin P, Liu B, Li L, Desharnais J, Hagen C, Levin NJ, Shields MJ, et al. Chemical generation of bispecific antibodies. Proc Natl Acad Sci. 2010;107(52):22611–16. doi:10.1073/pnas.1016478108.
  • Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng Des Sel. 1996;9(7):617–21. doi:10.1093/protein/9.7.617.
  • Spiess C, Bevers J, Jackman J, Chiang N, Nakamura G, Dillon M, Liu H, Molina P, Elliott JM, Shatz W, et al. Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J Biol Chem. 2013;288(37):26583–93. doi:10.1074/jbc.M113.480483.
  • Lindhofer H, Mocikat R, Steipe B, Thierfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol. 1995;155(1):219–25. doi:10.4049/jimmunol.155.1.219.
  • Smith EJ, Olson K, Haber LJ, Varghese B, Duramad P, Tustian AD, Oyejide A, Kirshner JR, Canova L, Menon J, et al. A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys. Sci Rep. 2015;5(1):1–2. doi:10.1038/srep17943.
  • Tustian AD, Endicott C, Adams B, Mattila J, Bak H. Development of purification processes for fully human bispecific antibodies based upon modification of protein a binding avidity. MAbs. 2016;8(4):828–38. doi:10.1080/19420862.2016.1160192.
  • Houde D, Peng Y, Berkowitz SA, Engen JR. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteom. 2010;9(8):1716–28. doi:10.1074/mcp.M900540-MCP200.
  • Burkitt W, Domann P, O’Connor G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci. 2010;19(4):826–35. doi:10.1002/pro.362.
  • Zhang A, Hu P, MacGregor P, Xue Y, Fan H, Suchecki P, Olszewski L, Liu A. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spectrometry and structural modeling. Anal Chem. 2014;86(7):3468–75. doi:10.1021/ac404130a.
  • Wei B, Gao X, Cadang L, Izadi S, Liu P, Zhang HM, Hecht E, Shim J, Magill G, Pabon JR, et al. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. MAbs. 2021;13(1):1893427. doi:10.1080/19420862.2021.1893427.
  • Kuhne F, Bonnington L, Malik S, Thomann M, Avenal C, Cymer F, Wegele H, Reusch D, Mormann M, Bulau P. The impact of immunoglobulin G1 Fc sialylation on backbone amide H/D exchange. Antibodies. 2019;8(4):49. doi:10.3390/antib8040049.
  • Pan J, Zhang S, Chou A, Borchers CH. Higher-order structural interrogation of antibodies using middle-down hydrogen/deuterium exchange mass spectrometry. Chem Sci. 2016;7(2):1480–86. doi:10.1039/C5SC03420E.
  • Rispens T, Davies AM, Ooijevaar-de Heer P, Absalah S, Bende O, Sutton BJ, Vidarsson G, Aalberse RC. Dynamics of inter-heavy chain interactions in human immunoglobulin G (IgG) subclasses studied by kinetic Fab arm exchange. J Biol Chem. 2014;289(9):6098–109. doi:10.1074/jbc.M113.541813.
  • Kang H, Larson NR, White DR, Middaugh CR, Tolbert T, Schöneich C. Effects of glycan structure on the stability and receptor binding of an IgG4-Fc. J Pharm Sci. 2020;109(1):677–89. doi:10.1016/j.xphs.2019.10.036.
  • Majumdar R, Manikwar P, Hickey JM, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Volkin DB, Weis DD. Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody. Biochemistry. 2013;52(19):3376–89. doi:10.1021/bi400232p.
  • Manikwar P, Majumdar R, Hickey JM, Thakkar SV, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Weis DD, Volkin DB. Correlating excipient effects on conformational and storage stability of an IgG1 monoclonal antibody with local dynamics as measured by hydrogen/deuterium-exchange mass spectrometry. J Pharm Sci. 2013;102(7):2136–51. doi:10.1002/jps.23543.
  • Majumdar R, Esfandiary R, Bishop SM, Samra HS, Middaugh CR, Volkin DB, Weis DD. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life. MAbs. 2015;7(1):84–95. doi:10.4161/19420862.2014.985494.
  • Toth IR, Pace SE, Mills BJ, Joshi SB, Esfandiary R, Middaugh CR, Weis DD, Volkin DB. Evaluation of hydrogen exchange mass spectrometry as a stability-indicating method for formulation excipient screening for an IgG4 monoclonal antibody. J Pharm Sci. 2018;107(4):1009–19. doi:10.1016/j.xphs.2017.12.009.
  • Walker EJ, Bettinger JQ, Welle KA, Hryhorenko JR, Vargas AM, O’Connell MR, Ghaemmaghami S. Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues. J Biol Chem. 2022;298(5):101872. doi:10.1016/j.jbc.2022.101872.
  • Walker EJ, Bettinger JQ, Welle KA, Hryhorenko JR, Ghaemmaghami S. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome. Proc Natl Acad Sci. 2019;116(13):6081–90. doi:10.1073/pnas.1819851116.
  • Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. doi:10.1038/nri2155.
  • Martin WL, West AP Jr, Gan L, Bjorkman PJ. Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: mechanism of Ph-dependent binding. Mol Cell. 2001;7(4):867–77. doi:10.1016/S1097-2765(01)00230-1.
  • Huang X, Zheng F, Zhan CG. Binding structures and energies of the human neonatal Fc receptor with human Fc and its mutants by molecular modeling and dynamics simulations. Mol Biosyst. 2013;9(12):3047–58. doi:10.1039/c3mb70231f.
  • Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, McKelvey T, Li Y, Li Y, Drummond J, Prueksaritanont T, et al. Impact of methionine oxidation on the binding of human IgG1 to FcRn and Fcγ receptors. Mol Immunol. 2009;46(8–9):1878–82. doi:10.1016/j.molimm.2009.02.002.
  • Mo J, Yan Q, So CK, Soden T, Lewis MJ, Hu P. Understanding the impact of methionine oxidation on the biological functions of IgG1 antibodies using hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2016;88(19):9495–502. doi:10.1021/acs.analchem.6b01958.
  • Suzuki T, Hashii N, Tada M, Ishii-Watabe A. The influence of antibody engineering on Fc conformation and Fc receptor binding properties: analysis of FcRn-binding engineered antibodies and an Fc fusion protein. MAbs. 2021;13(1):1923366. doi:10.1080/19420862.2021.1923366.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi:10.3389/fimmu.2014.00520.
  • Abdiche YN, Yeung YA, Chaparro-Riggers J, Barman I, Strop P, Chin SM, Pham A, Bolton G, McDonough D, Lindquist K, et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs. 2015;7(2):331–43. doi:10.1080/19420862.2015.1008353.
  • Hageman TS, Weis DD. Reliable identification of significant differences in differential hydrogen exchange-mass spectrometry measurements using a hybrid significance testing approach. Anal Chem. 2019;91(13):8008–16. doi:10.1021/acs.analchem.9b01325.