3,020
Views
1
CrossRef citations to date
0
Altmetric
Report

Interrogating heterogeneity of cysteine-engineered antibody-drug conjugates and antibody-oligonucleotide conjugates by capillary zone electrophoresis-mass spectrometry

, ORCID Icon, , , &
Article: 2229102 | Received 29 Nov 2022, Accepted 20 Jun 2023, Published online: 28 Jun 2023

References

  • Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6:34–14. doi:10.4161/mabs.27022.
  • Stimmel JB, Merrill BM, Kuyper LF, Moxham CP, Hutchins JT, Fling ME, Kull FC. Site-specific conjugation on serine→ cysteine variant monoclonal antibodies. J Biol Chem. 2000;275:30445–50. doi:10.1074/jbc.M001672200.
  • Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37. doi:10.1038/nrd.2016.268.
  • Vollmar BS, Wei B, Ohri R, Zhou J, He J, Yu SF, Leipold D, Cosino E, Yee S, Fourie-O’Donohue A. Attachment site cysteine thiol p K a is a key driver for site-dependent stability of THIOMAB antibody–drug conjugates. Bioconjugate Chem. 2017;28:2538–48. doi:10.1021/acs.bioconjchem.7b00365.
  • Sadowsky JD, Pillow TH, Chen J, Fan F, He C, Wang Y, Yan G, Yao H, Xu Z, Martin S. Development of efficient chemistry to generate site-specific disulfide-linked protein–and peptide–payload conjugates: application to THIOMAB antibody–drug conjugates. Bioconjugate Chem. 2017;28:2086–98. doi:10.1021/acs.bioconjchem.7b00258.
  • Nunes JP, Vassileva V, Robinson E, Morais M, Smith ME, Pedley RB, Caddick S, Baker JR, Chudasama V. Use of a next generation maleimide in combination with THIOMAB™ antibody technology delivers a highly stable, potent and near homogeneous THIOMAB™ antibody-drug conjugate (TDC). RSC Adv. 2017;7:24828–32. doi:10.1039/C7RA04606E.
  • Anami Y, Otani Y, Xiong W, Ha SY, Yamaguchi A, Rivera-Caraballo KA, Zhang N, An Z, Kaur B, Tsuchikama K. Homogeneity of antibody-drug conjugates critically impacts the therapeutic efficacy in brain tumors. Cell Rep. 2022;39:110839. doi:10.1016/j.celrep.2022.110839.
  • Thompson P, Bezabeh B, Fleming R, Pruitt M, Mao S, Strout P, Chen C, Cho S, Zhong H, Wu H. Hydrolytically stable site-specific conjugation at the N-terminus of an engineered antibody. Bioconjugate Chem. 2015;26:2085–96. doi:10.1021/acs.bioconjchem.5b00355.
  • Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Dorsselaer AV, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics. 2016;13:157–83. doi:10.1586/14789450.2016.1132167.
  • Larson EJ, Roberts DS, Melby JA, Buck KM, Zhu Y, Zhou S, Han L, Zhang Q, Ge Y. High-throughput multi-attribute analysis of antibody-drug conjugates enabled by trapped ion mobility spectrometry and top-down mass spectrometry. Anal Chem. 2021;93:10013–21. doi:10.1021/acs.analchem.1c00150.
  • Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs. 2018;10:222–43. doi:10.1080/19420862.2017.1412025.
  • Liu T, Tao Y, Xia X, Zhang Y, Deng R, Wang Y. Analytical tools for antibody–drug conjugates: from in vitro to in vivo. Trends Anal Chem. 2022;152:116621. doi:10.1016/j.trac.2022.116621.
  • Matsuda Y, Robles V, Malinao MC, Song J, Mendelsohn BA. Comparison of analytical methods for antibody–drug conjugates produced by chemical site-specific conjugation: first-generation AJICAP. Anal Chem. 2019;91:12724–32. doi:10.1021/acs.analchem.9b02192.
  • Neupane R, Bergquist J. Analytical techniques for the characterization of antibody drug conjugates: challenges and prospects. Eur J Mass Spectrom. 2017;23(6):417–26. doi:10.1177/1469066717733919.
  • Füssl F, Barry CS, Pugh KM, Chooi KP, Vijayakrishnan B, Kang GD, von Bulow C, Howard PW, Bones J. Simultaneous monitoring of multiple attributes of pyrrolobenzodiazepine antibody-drug conjugates by size exclusion chromatography–high resolution mass spectrometry. J Pharm Biomed Anal. 2021;205:114287. doi:10.1016/j.jpba.2021.114287.
  • Liu H, Gaza-Bulseco G, Lundell E. Assessment of antibody fragmentation by reversed-phase liquid chromatography and mass spectrometry. J Chromatogr B. 2008;876(1):13–23. doi:10.1016/j.jchromb.2008.10.015.
  • Chen TH, Yang Y, Zhang Z, Fu C, Zhang Q, Williams JD, Wirth MJ. Native reversed-phase liquid chromatography: a technique for LCMS of intact antibody–drug conjugates. Anal Chem. 2019;91(4):2805–12. doi:10.1021/acs.analchem.8b04699.
  • Jones J, Pack L, Hunter JH, Valliere-Douglass JF. Native size-exclusion chromatography-mass spectrometry: suitability for antibody–drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. MAbs. 2020;12(1):1682895. doi:10.1080/19420862.2019.1682895.
  • Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-oligonucleotide conjugates: a twist to antibody-drug conjugates. J Clin Med. 2021;10:838. doi:10.3390/jcm10040838.
  • Lechner A, Giorgetti J, Gahoual R, Beck A, Leize-Wagner E, François YN. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J Chromatogr B. 2019;1122-1123:1–17. doi:10.1016/j.jchromb.2019.05.014.
  • Kaur H, Beckman J, Zhang Y, Li ZJ, Szigeti M, Guttman A. Capillary electrophoresis and the biopharmaceutical industry: therapeutic protein analysis and characterization. Trends Anal Chem. 2021;144:116407. doi:10.1016/j.trac.2021.116407.
  • Römer J, Kiessig S, Moritz B, Neusüß C. Improved CE (SDS)‐CZE‐MS method utilizing an 8‐port nanoliter valve. Electrophoresis. 2021;42(4):374–80. doi:10.1002/elps.202000180.
  • Montealegre C, Neusüß C. Coupling imaged capillary isoelectric focusing with mass spectrometry using a nanoliter valve. Electrophoresis. 2018;39:1151–54. doi:10.1002/elps.201800013.
  • Römer J, Stolz A, Kiessig S, Moritz B, Neusüß C. Online top-down mass spectrometric identification of CE (SDS)-separated antibody fragments by two-dimensional capillary electrophoresis. J Pharm Biomed Anal. 2021;201:114089. doi:10.1016/j.jpba.2021.114089.
  • Wang WH, Cheung-Lau J, Chen Y, Lewis M, Tang QM. Specific and high-resolution identification of monoclonal antibody fragments detected by capillary electrophoresis–sodium dodecyl sulfate using reversed-phase HPLC with top-down mass spectrometry analysis. MAbs. 2019;11:1233–44. doi:10.1080/19420862.2019.1646554.
  • Dai J, Lamp J, Xia Q, Zhang Y. Capillary isoelectric focusing-mass spectrometry method for the separation and online characterization of intact monoclonal antibody charge variants. Anal Chem. 2018;90:2246–54. doi:10.1021/acs.analchem.7b04608.
  • Wang L, Bo T, Zhang Z, Wang G, Tong W, Da Yong Chen D. High resolution capillary isoelectric focusing mass spectrometry analysis of peptides, proteins, and monoclonal antibodies with a flow-through microvial interface. Anal Chem. 2018;90:9495–503. doi:10.1021/acs.analchem.8b02175.
  • Xu T, Han L, Thompson AMG, Sun L. An improved capillary isoelectric focusing-mass spectrometry method for high-resolution characterization of monoclonal antibody charge variants. Anal Methods. 2022;14:383–93. doi:10.1039/D1AY01556G.
  • Xu T, Han L, Sun L. Automated capillary isoelectric focusing-mass spectrometry with ultrahigh resolution for characterizing microheterogeneity and isoelectric points of intact protein complexes. Anal Chem. 2022;94:9674–82. doi:10.1021/acs.analchem.2c00975.
  • Belov AM, Zang L, Sebastiano R, Santos MR, Bush DR, Karger BL, Ivanov AR. Complementary middle‐down and intact monoclonal antibody proteoform characterization by capillary zone electrophoresis–mass spectrometry. Electrophoresis. 2018;39(16):2069–82. doi:10.1002/elps.201800067.
  • Shen X, Liang Z, Xu T, Yang Z, Wang Q, Chen D, Pham L, Du W, Sun L. Investigating native capillary zone electrophoresis-mass spectrometry on a high-end quadrupole-time-of-flight mass spectrometer for the characterization of monoclonal antibodies. Int J Mass Spectrom. 2021;462:116541. doi:10.1016/j.ijms.2021.116541.
  • Redman EA, Batz NG, Mellors JS, Ramsey JM. Integrated microfluidic capillary electrophoresis-electrospray ionization devices with online MS detection for the separation and characterization of intact monoclonal antibody variants. Anal Chem. 2015;87:2264–72. doi:10.1021/ac503964j.
  • Füssl F, Trappe A, Carillo S, Jakes C, Bones J. Comparative elucidation of cetuximab heterogeneity on the intact protein level by cation exchange chromatography and capillary electrophoresis coupled to mass spectrometry. Anal Chem. 2020;92:5431–38. doi:10.1021/acs.analchem.0c00185.
  • Jooß K, Hühner J, Kiessig S, Moritz B, Neusüß C. Two-dimensional capillary zone electrophoresis–mass spectrometry for the characterization of intact monoclonal antibody charge variants, including deamidation products. Anal Bioanal Chem. 2017;409:6057–67. doi:10.1007/s00216-017-0542-0.
  • Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Anal Chem. 2016;88:480–507. doi:10.1021/acs.analchem.5b04561.
  • Han M, Wang Y, Cook K, Bala N, Soto M, Rock DA, Pearson JT, Rock BM. Universal automated immunoaffinity purification-CE−MS platform for accelerating next generation biologic design. Anal Chem. 2021;93(13):5562–69. doi:10.1021/acs.analchem.1c00149.
  • Redman EA, Mellors JS, Starkey JA, Ramsey JM. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis–mass spectrometry. Anal Chem. 2016;88:2220–26. doi:10.1021/acs.analchem.5b03866.
  • Lubeckyj RA, McCool EN, Shen X, Kou Q, Liu X, Sun L. Single-shot top-down proteomics with capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for identification of nearly 600 Escherichia coli proteoforms. Anal Chem. 2017;89:12059–67. doi:10.1021/acs.analchem.7b02532.
  • Zhu G, Sun L, Yan X, Dovichi NJ. Bottom-up proteomics of Escherichia coli using dynamic pH junction preconcentration and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry. Anal Chem. 2014;86:6331–36. doi:10.1021/ac5004486.
  • McPherson MJ, Hobson AD. Pushing the envelope: advancement of ADCs outside of oncology. Antibody-Drug Conjugates: Methods Protoc. New York, NY: Springer US. 2020:23–36. doi:10.1007/978-1-4939-9929-3.
  • Christie RJ, Fleming R, Bezabeh B, Woods R, Mao S, Harper J, Joseph A, Wang Q, Xu ZQ, Wu H, et al. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J Control Release. 2015;220:660–70. doi:10.1016/j.jconrel.2015.09.032.
  • Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, et al. Maleimide–thiol adducts stabilized through stretching. Nat Chem. 2019;11(4):310–19. doi:10.1038/s41557-018-0209-2.
  • Pillow TH, Tien J, Parsons-Reponte KL, Bhakta S, Li H, Staben LR, Li G, Chuh J, Fourie-O’Donohue A, Darwish M, et al. Site-specific trastuzumab maytansinoid antibody–drug conjugates with improved therapeutic activity through linker and antibody engineering. J Med Chem. 2014;57(19):7890–99. doi:10.1021/jm500552c.
  • Hsu NS, Lee CC, Kuo WC, Chang Y-W, Lo SY, Wang AHJ. Development of a versatile and modular linker for antibody–drug conjugates based on oligonucleotide strand pairing. Bioconjugate Chem. 2020;31:1804–11. doi:10.1021/acs.bioconjchem.0c00281.
  • Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, Chen S, Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Sig Transduct Target Ther. 2022;7(1):1–28. doi:10.1038/s41392-021-00868-x.
  • Mu R, Yuan J, Huang Y, Meissen JK, Mou S, Liang M, Rosenbaum AI. Bioanalytical methods and strategic perspectives addressing the rising complexity of novel bioconjugates and delivery routes for biotherapeutics. BioDrugs. 2022;36(2):181–96. doi:10.1007/s40259-022-00518-w.
  • Nagornov KO, Gasilova N, Kozhinov AN, Virta P, Holm P, Menin L, Nesatyy VJ, Tsybin YO. Drug-to-antibody ratio estimation via proteoform peak integration in the analysis of antibody–oligonucleotide conjugates with Orbitrap fourier transform mass spectrometry. Anal Chem. 2021;93:12930–37. doi:10.1021/acs.analchem.1c02247.
  • Lodge JM, Schauer KL, Brademan DR, Riley NM, Shishkova E, Westphall MS, Coon JJ. Top-down characterization of an intact monoclonal antibody using activated ion electron transfer dissociation. Anal Chem. 2020;92:10246–51. doi:10.1021/acs.analchem.0c00705.
  • Fornelli L, Srzentić K, Huguet R, Mullen C, Sharma S, Zabrouskov V, Fellers RT, Durbin KR, Compton PD, Kelleher NL. Accurate sequence analysis of a monoclonal antibody by top-down and middle-down orbitrap mass spectrometry applying multiple ion activation techniques. Anal Chem. 2018;90:8421–29. doi:10.1021/acs.analchem.8b00984.