4,394
Views
1
CrossRef citations to date
0
Altmetric
Report

Manufacturability and functionality assessment of different formats of T-cell engaging bispecific antibodies

, , , , , , , & ORCID Icon show all
Article: 2231129 | Received 08 Mar 2023, Accepted 26 Jun 2023, Published online: 04 Jul 2023

References

  • Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, Huang Y, Xu Y, Qian C. Bispecific antibodies: from research to clinical application. Front Immunol [Internet]. 2021; 12. [cited 2023 Feb 20]. doi: 10.3389/fimmu.2021.626616. Available from /pmc/articles/PMC8131538/.
  • Nie S, Wang Z, Moscoso-Castro M, D’Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther. 2020;3(1):18–17. doi:10.1093/abt/tbaa003.
  • Zugmaier G, Klinger M, Schmidt M, Subklewe M. Clinical overview of anti-CD19 BiTE® and ex vivo data from anti-CD33 BiTE® as examples for retargeting T cells in hematologic malignancies. Mol Immunol. 2015;67(2):58–66. doi:10.1016/j.molimm.2015.02.033.
  • Burt R, Warcel D, Fielding AK. Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Hum Vaccin Immunother [Internet]. 2019;15(3):594–602. Available from https://pubmed.ncbi.nlm.nih.gov/30380973.
  • Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, Kuruvilla J, Canales M, Dietrich S, Fay K, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol [Internet] Available from. 2022;23(8):1055–65. [cited 2023 Feb 20]. http://www.thelancet.com/article/S1470204522003357/fulltext.
  • Kang C. Teclistamab: first approval. Drugs Drugs [Internet] Available from /pmc/articles/PMC9646474/. 2022;82(16):1613. [[cited 2023 Feb 20]]. doi:10.1007/s40265-022-01793-1.
  • Wu Z, v CN. T cell engaging bispecific antibody (T-BsAb): from technology to therapeutics. Pharmacol Ther [Internet]. 2018;182:161–75. Available from https://pubmed.ncbi.nlm.nih.gov/28834699.
  • Husain B, Ellerman D. Expanding the boundaries of biotherapeutics with bispecific antibodies. BioDrugs [Internet]. 2018;32(5):441–64. Available from. doi:10.1007/s40259-018-0299-9.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs [Internet]. 2017;9:182–212. doi:10.1080/19420862.2016.1268307. Available from.
  • Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol. 2013;5:5–11. doi:10.2147/CPAA.S42689.
  • Orcutt KD, Ackerman ME, Cieslewicz M, Quiroz E, Slusarczyk AL, v FJ, Wittrup KD. A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel. 2010;23(4):221–28. doi:10.1093/protein/gzp077.
  • Schoonjans R, Willems A, Schoonooghe S, Leœn J, Grooten J, Mertens N. A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain. Biomol Eng. 2001;17(6):193–202. doi:10.1016/S1389-0344(01)00066-1.
  • Jurchison S Aptevo therapeutics reports third quarter 2018 financial results. [Internet]. 2018 [cited 2022 Mar 1]; Available from: https://aptevotherapeutics.gcs-web.com/news-releases/news-release-details/aptevo-therapeutics-reports-third-quarter-2018-financial-results
  • Fan G, Wang Z, Hao M, Li J. Bispecific antibodies and their applications. J Hematol Oncol. 2015;8(1):130. doi:10.1186/s13045-015-0227-0.
  • Ridgway JBB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng Des Sel. 1996;9(7):617–21. Available from. doi:10.1093/protein/9.7.617.
  • Gunasekaran K, Pentony M, Shen M, Garrett L, Forte C, Woodward A, Bin NS, Born T, Retter M, Manchulenko K, et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem. 2010;285(25):19637–46. doi:10.1074/jbc.M110.117382.
  • de Nardis C, Hendriks LJA, Poirier E, Arvinte T, Gros P, Bakker ABH, de Kruif J. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1. J Biol Chem. 2017;292(35):14706–17. doi:10.1074/jbc.M117.793497.
  • Liu Z, Leng EC, Gunasekaran K, Pentony M, Shen M, Howard M, Stoops J, Manchulenko K, Razinkov V, Liu H, et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem. 2015;290(12):7535–62. doi:10.1074/jbc.M114.620260.
  • Shiraiwa H, Narita A, Kamata-Sakurai M, Ishiguro T, Sano Y, Hironiwa N, Tsushima T, Segawa H, Tsunenari T, Ikeda Y, et al. Engineering a bispecific antibody with a common light chain: identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974. Methods. 2019;154:10–20. doi:10.1016/j.ymeth.2018.10.005.
  • Lewis SM, Wu X, Pustilnik A, Sereno A, Huang F, Rick HL, Guntas G, Leaver-Fay A, Smith EM, Ho C, et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol. 2014;32(2):191–98. doi:10.1038/nbt.2797.
  • Froning KJ, Leaver-Fay A, Wu X, Phan S, Gao L, Huang F, Pustilnik A, Bacica M, Houlihan K, Chai Q, et al. Computational design of a specific heavy chain/κ light chain interface for expressing fully IgG bispecific antibodies. Protein Sci. 2017;26(10):2021–38. doi:10.1002/pro.3240.
  • Schaefer W, Regula JT, Bähner M, Schanzer J, Croasdale R, Dürr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A. 2011;108(27):11187–92. doi:10.1073/pnas.1019002108.
  • Schanzer JM, Wartha K, Croasdale R, Moser S, Künkele KP, Ries C, Scheuer W, Duerr H, Pompiati S, Pollman J, et al. A novel glycoengineered bispecific antibody format for targeted inhibition of epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor type i (IGF-1R) demonstrating unique molecular properties. J Biol Chem. 2014;289(27):18693–706. doi:10.1074/jbc.M113.528109.
  • Bardwell PD, Staron MM, Liu J, Tao Q, Scesney S, Bukofzer G, Rodriguez LE, Choi C-H, Wang J, Chang Q, et al. Potent and conditional redirected T cell killing of tumor cells using Half DVD-Ig. Protein Cell. 2018;9(1):121–29. doi:10.1007/s13238-017-0429-z.
  • Leong SR, Sukumaran S, Hristopoulos M, Totpal K, Stainton S, Lu E, Wong A, Tam L, Newman R, Vuillemenot BR, et al. An anti-CD3/anti–CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 2017;129(5):609–18. doi:10.1182/blood-2016-08-735365.
  • de Zafra CL Z, Fajardo F, Zhong W, Bernett MJ, Muchhal US, Moore GL, Stevens J, Case R, Pearson JT, Liu S, et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell–recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res. 2019;25(13):3921–33. doi:10.1158/1078-0432.CCR-18-2752.
  • Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P, Clarke SC, Dang K, Harris KE, Iyer S, et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs [Internet]. Available from 2019 [[cited 2023 Feb 23]];11(4):639–52.
  • Ellerman D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods. 2019;154:102–17. doi:10.1016/j.ymeth.2018.10.026.
  • Slaga D, Ellerman D, Lombana TN, Vij R, Li J, Hristopoulos M, Clark R, Johnston J, Shelton A, Mai E, et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci Transl Med. 2018;10(463):10. doi:10.1126/scitranslmed.aat5775.
  • Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, Bodmer W, Lehmann S, Hofer T, Hosse RJ, et al. A novel carcinoembryonic antigen T-Cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–97. doi:10.1158/1078-0432.CCR-15-1696.
  • Dickopf S, Georges GJ, Brinkmann U. Format and geometries matter: structure-based design defines the functionality of bispecific antibodies. Comput Struct Biotechnol J. 2020;18:1221–27. doi:10.1016/j.csbj.2020.05.006.
  • Wu Z, Cheung NV. T cell engaging bispecific antibody (T-BsAb): from technology to therapeutics. Pharmacology & Therapeutics. 2018;182:161–75. doi:10.1016/j.pharmthera.2017.08.005.
  • Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. ScFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:1–15. doi:10.1155/2012/980250.
  • Moore GL, Bernett MJ, Rashid R, Pong EW, Nguyen D-H, Jacinto J, Eivazi A, Nisthal A, Diaz JE, Chu SY, et al. A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods. 2019;154:38–50. doi:10.1016/j.ymeth.2018.10.006.
  • Qi J, Li X, Peng H, Cook EM, Dadashian EL, Wiestner A, Park H, Rader C Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proceedings of the National Academy of Sciences [Internet] 2018; 115:E5467–E76. Available from: http://www.pnas.org/content/115/24/E5467.abstract
  • Qi J, Chen S-S, Chiorazzi N, Rader C. An IgG1-like bispecific antibody targeting CD52 and CD20 for the treatment of B-cell malignancies. Methods. 2019;154:70–76. doi:10.1016/j.ymeth.2018.08.008.
  • Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, Stafford RL, Steiner AR, Sato AK, Hallam TJ, et al. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. MAbs [Internet]. 2015;7:231–42. doi:10.4161/19420862.2015.989013. Available from.
  • Tran B, Horvath L, Dorff TB, Greil R, Machiels J-P, Roncolato F, Autio KA, Rettig M, Fizazi K, Lolkema MP, et al. Phase I study of AMG 160, a half-life extended bispecific T-cell engager (HLE BiTE) immune therapy targeting prostate-specific membrane antigen (PSMA), in patients with metastatic castration-resistant prostate cancer (mCRPC). Journal Of Clinical Oncology [Internet]. 2020;38(6_suppl):TPS261–TPS261. doi:10.1200/JCO.2020.38.6_suppl.TPS261. Available from.
  • Labrijn AF, Janmaat ML, Reichert JM, PWHI P. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov [Internet]. 2019;18(8):585–608. Available from. doi:10.1038/s41573-019-0028-1.
  • Dimasi N, Fleming R, Wu H, Gao C. Molecular engineering strategies and methods for the expression and purification of IgG1-based bispecific bivalent antibodies. Methods. 2019;154:77–86. doi:10.1016/j.ymeth.2018.08.004.
  • Lin TY, Park JA, Long A, Guo HF, v CN. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy. J Immunother Cancer [Internet]. 2021 [[cited 2023 Feb 23]];9(9):e003114. Available from https://jitc.bmj.com/content/9/9/e003114.
  • King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985;229(4717):974–76. doi:10.1126/science.2992089.
  • Hummel HD, Kufer P, Grüllich C, Seggewiss-Bernhardt R, Deschler-Baier B, Chatterjee M, Goebeler ME, Miller K, de Santis M, Loidl W, et al. Pasotuxizumab, a BiTE®immune therapy for castration-resistant prostate cancer: phase I, dose-escalation study findings. Immunotherapy [Internet]. Available from 2021 [[cited 2023 Feb 19]];13(2):125–41.
  • Rosenberg AS. Effects of protein aggregates: an immunologic perspective. Aaps J. 2006;8(3):E501–7. doi:10.1208/aapsj080359.
  • Sauerborn M, Brinks V, Jiskoot W, Schellekens H. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci. 2010;31(2):53–59. doi:10.1016/j.tips.2009.11.001.
  • Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78(1):394–404. doi:10.1016/S0006-3495(00)76602-1.
  • Garber E, Demarest SJ. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355(3):751–57. doi:10.1016/j.bbrc.2007.02.042.
  • Ionescu RM, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci [Internet]. 2008 [[cited 2023 Feb 19]];97(4):1414–26. Available from http://jpharmsci.org/article/S002235491632545X/fulltext.
  • Scheer JM, Sandoval W, Elliott JM, Shao L, Luis E, Lewin-Koh SC, Schaefer G, Vandlen R, Verma C. Reorienting the fab domains of trastuzumab results in potent HER2 activators. PLoS One [Internet] Available from. 2012;7(12):e51817. [[cited 2023 May 14]].
  • Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20(7):838–47. doi:10.1016/j.drudis.2015.02.008.
  • Kimerer LK, Pabst TM, Hunter AK, Carta G. Chromatographic behavior of bivalent bispecific antibodies on cation exchange columns. II Biomol Perspect J Chromatogr A. 2019;1601:121–132.
  • Bird RE, Walker BW. Single chain antibody variable regions. Trends Biotechnol. 1991;9(1):132–37. doi:10.1016/0167-7799(91)90044-I.
  • Krauss J, Arndt MAE, Zhu Z, Newton DL, Vu BK, Choudhry V, Darbha R, Ji X, Courtenay-Luck NS, Deonarain MP, et al. Impact of antibody framework residue VH-71 on the stability of a humanised anti-MUC1 scFv and derived immunoenzyme. Br J Cancer. 2004;90(9):1863–70. doi:10.1038/sj.bjc.6601759.
  • Roda-Navarro P, Álvarez-Vallina L. Understanding the spatial topology of artificial immunological synapses assembled in t cell-redirecting strategies: a major issue in cancer immunotherapy. Front Cell Dev Biol. 2020;7:370. doi:10.3389/fcell.2019.00370.
  • Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, Clark V, Hristopoulos M, Cook R, Slaga D, et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell. 2017;31(3):383–95. doi:10.1016/j.ccell.2017.02.001.
  • Bluemel C, Hausmann S, Fluhr P, Sriskandarajah M, Stallcup WB, Baeuerle PA, Kufer P. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol Immun. 2010;59(8):1197–209. doi:10.1007/s00262-010-0844-y.
  • Cheng M, Santich B, Xu H, Ahmed M, Huse M, Cheung N-K. Successful engineering of a highly potent single-chain-variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors. Oncoimmunology. 2016;5(6):0. doi:10.1080/2162402X.2016.1168557.
  • Kipriyanov SM, Moldenhauer G, Braunagel M, Reusch U, Cochlovius B, le Gall F, Kouprianova OA, von der Lieth CW, Little M. Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. J Mol Biol. 2003;330(1):99–111. doi:10.1016/S0022-2836(03)00526-6.
  • Onsum MD, Geretti E, Paragas V, Kudla AJ, Moulis SP, Luus L, Wickham TJ, McDonagh CF, Macbeath G, Hendriks BS. Single-cell quantitative HER2 measurement identifies heterogeneity and distinct subgroups within traditionally defined HER2-positive patients. Am J Pathol. 2013;183(5):1446–60. doi:10.1016/j.ajpath.2013.07.015.
  • Schlake T, Bode J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry. 1994;33(43):12746–51. doi:10.1021/bi00209a003.
  • Yeo JHM, SCL H, Mariati M, Koh E, Tay SJ, Woen S, Zhang P, Yang Y. Optimized selection marker and CHO host cell combinations for generating high monoclonal antibody producing cell lines. Biotechnol J. 2017;12(12):12. doi:10.1002/biot.201700175.
  • SCL H, Bardor M, Li B, Lee JJ, Song Z, Tong YW, Goh LT, Yang Y, Hendershot LM. Comparison of Internal Ribosome Entry Site (IRES) and Furin-2A (F2A) for monoclonal antibody expression level and quality in CHO Cells. PLoS One. 2013;8(5):e63247. doi:10.1371/journal.pone.0063247.
  • Ho SCL, Bardor M, Feng H, Mariati Tong YW, Song Z, Yap MGS, Yang Y IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J Biotechnol 2012; 157.
  • SCL H, Koh EYC, Soo BPC, Chao SH, Yang Y, Yang Y. Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnol. 2016;16(1). doi:10.1186/s12896-016-0300-y.
  • Nguyen NTB, Lin J, Tay SJ, Mariati Yeo J, Nguyen-Khuong T, Yang Y, Yang Y. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci Rep. 2021;11(1):11. doi:10.1038/s41598-021-92320-x.
  • Ong HK, Nguyen NTB, Bi J, Yang Y. Vector design for enhancing expression level and assembly of knob-into-hole based FabscFv-Fc bispecific antibodies in CHO cells. Antib Ther. 2022 [[cited 2023 Jun 18]];5(4):288–300. Available from https://pubmed.ncbi.nlm.nih.gov/36518226/.
  • Huo J, Huang Y, Zheng Z, Tay XN, Bin MF, Zhang W, Lam KP, Yang Y, Xu S. Development of a T cell-redirecting bispecific antibody targeting B-cell maturation antigen for the suppression of multiple myeloma cell growth. Antib Ther. 2022 [[cited 2023 Feb 23]];5(2):138–49. Available from https://academic.oup.com/abt/article/5/2/138/6604657.