2,485
Views
2
CrossRef citations to date
0
Altmetric
Review

Advances in the structural characterization of complexes of therapeutic antibodies with PD-1 or PD-L1

ORCID Icon, ORCID Icon, , , & ORCID Icon
Article: 2236740 | Received 12 Apr 2023, Accepted 11 Jul 2023, Published online: 02 Aug 2023

References

  • Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Onco. 2015;33:1974–17. doi:10.1200/jco.2014.59.4358. PMID: WOS:000355999800019.
  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–55. doi:10.1126/science.aar4060. PMID: WOS:000428043600036.
  • Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi:10.1126/science.aaa8172. PMID: WOS:000352079500026.
  • Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24. doi:10.1093/intimm/dxm057. PMID: WOS:000249127900001.
  • Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy. Immun. 2016;44:1069–78. doi:10.1016/j.immuni.2016.04.023. PMID: WOS:000376478500008.
  • Tan S, Chen D, Liu K, He M, Song H, Shi Y, Liu J, Zhang CWH, Qi J, Yan J, et al. Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. Protein Cell. 2016;7(12):866–77. doi:10.1007/s13238-016-0337-7. PMID: WOS:000391431600004.
  • Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–99. doi:10.1038/ni.2035. PMID: WOS:000290707100007.
  • Dong HD, Zhu GF, Tamada K, Chen LP. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–69. doi:10.1038/70932. WOS:000084049700034. PMID: WOS:000084049700034.
  • Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114:1537–44. doi:10.1182/blood-2008-12-195792. PMID: WOS:000269380300015.
  • Hawkes EA, Grigg A, Chong G. Programmed cell death-1 inhibition in lymphoma. Lancet Oncol. 2015;16:E234–E45. doi:10.1016/s1470-2045(15)70103-8. PMID: WOS:000353908200025.
  • Chen L, Han X. Anti–PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Investigat. 2015;125(9):3384–91. PMID: WOS:000362303600013. doi:10.1172/jci80011.
  • Okazaki T, Honjo T. The PD-1–PD-L pathway in immunological tolerance. Trends Immunol. 2006;27(4):195–201. PMID: WOS:000237145700008. doi:10.1016/j.it.2006.02.001.
  • Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–67. doi:10.1038/nature14011. PMID: WOS:000346247600053.
  • Schumacher TN, Kesmir C, van Buuren MM. Biomarkers in cancer immunotherapy. Cancer Cell. 2015;27:12–14. doi:10.1016/j.ccell.2014.12.004. PMID: WOS:000347906900006.
  • Hoy SM. Sintilimab: first global approval. Drugs. 2019;79:341–46. doi:10.1007/s40265-019-1066-z. PMID: WOS:000459785400010.
  • Keam SJ. Toripalimab: first global approval. Drugs. 2019;79:573–78. doi:10.1007/s40265-019-01076-2. PMID: WOS:000463813000009.
  • Lee A. Serplulimab: first approval. Drugs. 2022;82:1137–41. doi:10.1007/s40265-022-01740-0. PMID: WOS:000825375200001.
  • Lee AN, Keam SJ. Tislelizumab: first approval. Drugs. 2020;80:617–24. doi:10.1007/s40265-020-01286-z. PMID: WOS:000520675700002.
  • Markham A. Zimberelimab: first approval. Drugs. 2021;81:2063–68. doi:10.1007/s40265-021-01628-5. PMID: WOS:000712334300001.
  • Markham A, Duggan S. Cemiplimab: first global approval. Drugs. 2018;78(17):1841–46. PMID: WOS:000451587400008. doi:10.1007/s40265-018-1012-5.
  • Markham A, Keam SJ. Camrelizumab: first global approval. Drugs. 2019;79(12):1355–61. PMID: WOS:000479057000008. doi:10.1007/s40265-019-01167-0.
  • Paik J. Nivolumab plus relatlimab: first approval. Drugs. 2022;82(8):925–31. PMID: WOS:000793714400001. doi:10.1007/s40265-022-01723-1.
  • Poole RM. Pembrolizumab: first global approval. Drugs. 2014;74(16):1973–81. PMID: WOS:000344619000008. doi:10.1007/s40265-014-0314-5.
  • Dhillon S. Penpulimab: first approval. Drugs. 2021;81(18):2159–66. PMID: WOS:000721652600001. doi:10.1007/s40265-021-01640-9.
  • Markham A. Dostarlimab: first approval. Drugs. 2021;81(10):1213–19. PMID: WOS:000659390700002. doi:10.1007/s40265-021-01539-5.
  • Syed YY. Durvalumab: first global approval. Drugs. 2017;77(12):1369–76. PMID: WOS:000406276900009. doi:10.1007/s40265-017-0782-5.
  • Rao A, Patel MR. A review of avelumab in locally advanced and metastatic bladder cancer. Ther Adv Urol. 2019;11:1756287218823485. doi:10.1177/1756287218823485. PMID: WOS:000457393900001.
  • Markham A. Envafolimab: first approval. Drugs. 2022;82(2):235–40. PMID: WOS:000751583100001. doi:10.1007/s40265-022-01671-w.
  • Markham A. Atezolizumab: first global approval. Drugs. 2016;76(12):1227–32. PMID: WOS:000380745400007. doi:10.1007/s40265-016-0618-8.
  • Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, Domling A, Dubin G, Holak TA. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Struct. 2015;23:2341–48. doi:10.1016/j.str.2015.09.010. PMID: WOS:000366171500016.
  • Pascolutti R, Sun XQ, Kao J, Maute RL, Ring AM, Bowman GR, Kruse AC. Structure and dynamics of PD-L1 and an ultra-high-affinity PD-1 receptor mutant. Struct. 2016;24:1719–28. doi:10.1016/j.str.2016.06.026. PMID: WOS:000386763800011.
  • Lin DW, Tanaka Y, Iwasaki M, Gittis AG, Su HP, Mikami B, Okazaki T, Honjo T, Minato N, Garboczi DN. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. P Natl Acad Sci Usa. 2008;105:3011–16. doi:10.1073/pnas.0712278105. PMID: WOS:000253567900048.
  • Horita S, Nomura Y, Sato Y, Shimamura T, Iwata S, Nomura N. High-resolution crystal structure of the therapeutic antibody pembrolizumab bound to the human PD-1. Sci Rep-Uk. 2016;6(1):35297. PMID: WOS:000385346100001. doi:10.1038/srep35297.
  • Na Z, Yeo SP, Bharath SR, Bowler MW, Balikci E, Wang CI, Song H. Structural basis for blocking PD-1-mediated immune suppression by therapeutic antibody pembrolizumab. Cancer Res. 2017;27:147–50. doi:10.1038/cr.2016.77. PMID: WOS:000392277900014.
  • Lee JY, Lee HT, Shin W, Chae J, Choi J, Kim SH, Lim H, Heo TW, Park KY, Ryu SE, et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun. 2016;7. doi:10.1038/ncomms13354. PMID: WOS:000386515200001.
  • Tan S, Zhang H, Chai Y, Song H, Tong Z, Wang Q, Qi J, Wong G, Zhu X, Liu WJ, et al. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun. 2017;8(1):14369. doi:10.1038/ncomms14369. PMID: WOS:000393375400001.
  • Lu D, Xu Z, Zhang D, Jiang M, Liu K, He J, Ma D, Ma X, Tan S, Gao GF, et al. PD-1 N58-glycosylation-dependent binding of monoclonal antibody cemiplimab for immune checkpoint therapy. Front Immunol. 2022;13:826045. doi:10.3389/fimmu.2022.826045. PMID: WOS:000771576300001.
  • Sang HL, Lee HT, Lim H, Kim Y, Heo YSJB, Communications BR. Crystal structure of PD-1 in complex with an antibody-drug tislelizumab used in tumor immune checkpoint therapy. Biochem Bioph Res Co. 2020;527(1):226–31. doi:10.1016/j.bbrc.2020.04.121.
  • Hong Y, Feng Y, Sun H, Zhang B, Wu H, Zhu Q, Li Y, Zhang T, Zhang Y, Cui X, et al. Tislelizumab uniquely binds to the CC′ loop of PD-1 with slow-dissociated rate and complete PD-L1 blockage. FEBS Open Bio. 2021;11(3):782–92. doi:10.1002/2211-5463.13102. PMID: WOS:000618375800001.
  • Liu K, Tan S, Jin W, Guan J, Wang Q, Sun H, Qi J, Yan J, Chai Y, Wang Z, et al. N-glycosylation of PD-1 promotes binding of camrelizumab. EMBO Rep. 2020;21(12):e51444. doi:10.15252/embr.202051444. PMID: WOS:000577337200001.
  • Liu H, Guo L, Zhang J, Zhou Y, Zhou J, Yao J, Wu H, Yao S, Chen B, Chai Y, et al. Glycosylation-independent binding of monoclonal antibody toripalimab to FG loop of PD-1 for tumor immune checkpoint therapy. MAbs. 2019;11(4):681–90. doi:10.1080/19420862.2019.1596513. PMID: WOS:000476960300006.
  • Issafras H, Fan S, Tseng CL, Cheng Y, Lin P, Xiao L, Huang YJ, Tu CH, Hsiao YC, Li M, et al. Structural basis of HLX10 PD-1 receptor recognition, a promising anti-PD-1 antibody clinical candidate for cancer immunotherapy. PLoS One. 2021;16(12):e0257972. doi:10.1371/journal.pone.0257972. PMID: WOS:000773555700007.
  • Zhang F, Qi X, Wang X, Wei D, Wu J, Feng L, Cai H, Wang Y, Zeng N, Xu T, et al. Structural basis of the therapeutic anti-PD-L1 antibody atezolizumab. Oncotarget. 2017;8:90215–24. doi:10.18632/oncotarget.21652. PMID: WOS:000414097100066.
  • Lee HT, Lee JY, Lim H, Lee SH, Moon YJ, Pyo HJ, Ryu SE, Shin W, Heo YS. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci Rep-Uk. 2017;7:5532. doi:10.1038/s41598-017-06002-8. PMID: WOS:000405675400012.
  • Tan S, Liu K, Chai Y, Zhang CWH, Gao S, Gao GF, Qi J. Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell. 2018;9(1):135–39. PMID: WOS:000423135400011. doi:10.1007/s13238-017-0412-8.
  • Liu K, Tan S, Chai Y, Chen D, Song H, Zhang CH, Shi Y, Liu J, Tan W, Lyu J, et al. Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cancer Res. 2017;27:151–53. doi:10.1038/cr.2016.102. PMID: WOS:000392277900015.
  • Zhang F, Wei H, Wang X, Bai Y, Wang P, Wu J, Jiang X, Wang Y, Cai H, Xu T, et al. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discov. 2017;3(1):17004. doi:10.1038/celldisc.2017.4. PMID: WOS:000414903600001.
  • Lazar-Molnar E, Yan QR, Cao E, Ramagopal U, Nathenson SG, Almo SC. Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc Natl Acad Sci USA. 2008;105(30):10483–88. PMID: WOS:000258211600039. doi:10.1073/pnas.0804453105.
  • Cheng XX, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, Huo JD, Yu C, Evans EJ, Leslie AJ, et al. Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem. 2013;288(17):11771–85. doi:10.1074/jbc.M112.448126. PMID: WOS:000318157600014.
  • Tan SG, Zhang CWH, Gao GF. Seeing is believing: anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy. Signal Transduct Tar. 2016;1(1):e16029. PMID: WOS:000454602900017. doi:10.1038/sigtrans.2016.29.
  • Tan SG, Chen DQ, Liu KF, He MN, Song H, Shi Y, Liu J, Zhang C, Qi JX, Yan JH, et al. Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. Protein Cell. 2016;7(12):866–77. doi:10.1007/s13238-016-0337-7. PMID: WOS:000391431600004.
  • Shin J, Phelan PJ, Gjoerup O, Bachovchin W, Bullock PA. Characterization of a single chain variable fragment of nivolumab that targets PD-1 and blocks PD-L1 binding. Protein Expres Purif. 2021;177:105766. doi:10.1016/j.pep.2020.105766. PMID: WOS:000579451300016.
  • Sahu M, Zimberelimab CJ. Anti-programmed cell death protein 1 (PD-1) monoclonal antibody, Treatment of hodgkin lymphoma, treatment of advanced solid tumors. Drugs Fut. 2022;47(2):115–21. PMID: WOS:000759046000001. doi:10.1358/dof.2022.47.2.3400575.
  • Mittal L, Srivastava M, Kumari A, Tonk RK, Awasthi A, Asthana S. Interplay among structural stability, plasticity, and energetics determined by conformational attuning of flexible loops in PD-1. J Chem Inf Model. 2021;61(1):358–84. PMID: WOS:000613719400033. doi:10.1021/acs.jcim.0c01080.
  • Lu D, Xu ZP, Zhang D, Jiang M, Liu KF, He JH, Ma DL, Ma XP, Tan SG, Gao GF, et al. PD-1 N58-gycosylation-dependent binding of monoclonal antibody cemiplimab for immune checkpoint therapy. Front Immunol. 2022;13:826045. doi:10.3389/fimmu.2022.826045. PMID: WOS:000771576300001.
  • Liu KF, Tan SG, Jin WJ, Guan JW, Wang QL, Sun H, Qi JX, Yan JH, Chai Y, Wang ZF, et al. N-glycosylation of PD-1 promotes binding of camrelizumab. EMBO Rep. 2020;21(12):e51444. doi:10.15252/embr.202051444. PMID: WOS:000577337200001.
  • Liu HC, Guo LJ, Zhang J, Zhou YH, Zhou JW, Yao J, Wu H, Yao S, Chen B, Chai Y, et al. Glycosylation-independent binding of monoclonal antibody toripalimab to FG loop of PD-1 for tumor immune checkpoint therapy. MAbs. 2019;11(4):681–90. doi:10.1080/19420862.2019.1596513. PMID: WOS:000476960300006.
  • Lee HT, Lee SH, Heo YS. Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules. 2019;24:1190. doi:10.3390/molecules24061190. PMID: WOS:000465503800152.
  • Issafras H, Fan SL, Tseng CL, Cheng YC, Lin PH, Xiao LS, Huang YJ, Tu CH, Hsiao YC, Li M, et al. Structural basis of HLX10 PD-1 receptor recognition, a promising anti-PD-1 antibody clinical candidate for cancer immunotherapy. PLoS One. 2021;16(12):e0257972. doi:10.1371/journal.pone.0257972. PMID: WOS:000773555700007.
  • Ferris RL, Blumenschein G Jr., Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67. doi:10.1056/NEJMoa1602252. PMID: WOS:000387534200009.
  • Feng YC, Hong Y, Sun HZ, Zhang B, Wu HF, Li K, Liu XS, Liu Y. The molecular binding mechanism of tislelizumab, an investigational anti-PD-1 antibody, is differentiated from pembrolizumab and nivolumab. Cancer Res. 2019;79(13_Supplement):2383–2383. PMID: WOS:000488279400352. doi:10.1158/1538-7445.Am2019-2383.
  • Zhang F, Wei HD, Wang XX, Bai Y, Wang PL, Wu JW, Jiang XY, Wang YG, Cai HY, Xu T, et al. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discov. 2017;3(1):17004. doi:10.1038/celldisc.2017.4. PMID: WOS:000414903600001.
  • Tan SG, Liu KF, Chai Y, Zhang CWH, Gao S, Gao G, Qi JX. Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell. 2018;9(1):135–39. PMID: WOS:000423135400011. doi:10.1007/s13238-017-0412-8.
  • Liu KF, Tan SG, Chai Y, Chen DQ, Song H, Zhang CWH, Shi Y, Liu J, Tan WJ, Lyu JX, et al. Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cancer Res. 2017;27(1):151–53. doi:10.1038/cr.2016.102. PMID: WOS:000392277900015.
  • Cordova-Bahena L, Velasco-Velazquez MA. Anti-PD-1 and anti-PD-L1 antibodies as imminotherapy against cancer: a structural perspective. Rev Invest Clin. 2021;73:8–16. doi:10.24875/ric.20000341. PMID: WOS:000662706100003.
  • Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, et al. Immune checkpoint inhibitors in colorectal cancer: challenges and future prospects. Biomed. 2021;9(9):1075. doi:10.3390/biomedicines9091075. PMID: WOS:000699157400001.
  • Lin X, Lu X, Luo GS, Xiang H. Progress in PD-1/PD-L1 pathway inhibitors: from biomacromolecules to small molecules. Eur J Med Chem. 2020;186:111876. doi:10.1016/j.ejmech.2019.111876. PMID: WOS:000509616800004.
  • Mittal L, Tonk R, Awasthi A, Asthana S. Traversing through the dynamic protein–protein interaction landscape and conformational plasticity of PD-1 for small-molecule discovery. J Med Chem. 2022;65(8):5941–53. PMID: WOS:000797573100006. doi:10.1021/acs.jmedchem.2c00176.
  • Park UB, Jeong TJ, Gu N, Lee HT, Heo YS. Molecular basis of PD-1 blockade by dostarlimab, the FDA-approved antibody for cancer immunotherapy. Biochem Bioph Res Co. 2022;599:31–37. doi:10.1016/j.bbrc.2022.02.026. PMID: WOS:000755175000005.
  • Tang SG, Kim PS. A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. P Natl Acad Sci Usa. 2019;116:24500–06. doi:10.1073/pnas.1916916116. PMID: WOS:000500804600026.
  • Lee SH, Lee HT, Lim H, Kim Y, Park UB, Heo YS. Crystal structure of PD-1 in complex with an antibody-drug tislelizumab used in tumor immune checkpoint therapy. Biochem Bioph Res Co. 2020;527:226–31. doi:10.1016/j.bbrc.2020.04.121. PMID: WOS:000535964300034.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi:10.3389/fimmu.2014.00520. PMID: WOS:000354496200001.
  • Kim DW, Zager JS, Eroglu Z. Improving clinical outcomes with pembrolizumab in patients with advanced melanoma. Chin Clin Oncol. 2017;6:2–2. doi:10.21037/cco.2017.01.04. PMID: MEDLINE:28285535.
  • Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. New Engl J Med. 2016;375:1823–33. doi:10.1056/NEJMoa1606774. PMID: WOS:000387534200006.
  • Burtness B, Harrington KJ, Greil R. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study (vol 394, pg 1915, 2019). Lancet. 2020;395:564–564. WOS:000514849400026. PMID: WOS:000514849400026.
  • Riano I, Patel SR, Liu SV, Duma N. Evidence to date: evaluating pembrolizumab in the treatment of extensive-stage small-cell lung cancer. Clinics Pract. 2021;11:441–54. doi:10.3390/clinpract11030059. PMID: MEDLINE:34287275.
  • Lyu MM, Shen Y, Beharee N, Lu J, Deng F, Wang JH. The combined use of chemotherapy and radiotherapy with PD- I inhibitor, pembrolizumab, in advanced cervical cancer: a case report. OncoTargets Ther. 2020;13:4465–71. doi:10.2147/ott.S245190. PMID: WOS:000534220600001.
  • Asmar R, Yang J, Carvajal RD. Clinical utility of nivolumab in the treatment of advanced melanoma. Ther Clin Risk Manag. 2016;12:313–25. doi:10.2147/tcrm.S78039. PMID: WOS:000370939200001.
  • Cortinovis DL, Canova S, Abbate M, Colonese F, Bidoli P. Focus on nivolumab in NSCLC. Front Med-Lausanne. 2016;3:67. doi:10.3389/fmed.2016.00067. PMID: WOS:000407067900001.
  • Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. New Engl J Med. 2015;372:311–19. doi:10.1056/NEJMoa1411087. PMID: WOS:000348204500006.
  • Song Y, Gao Q, Zhang H, Fan L, Zhou J, Zou D, Li W, Yang H, Liu T, Wang Q, et al. Tislelizumab (BGB-A317) for relapsed/refractory classical Hodgkin lymphoma: preliminary efficacy and safety results from a phase 2 study. Blood. 2018;132(Supplement 1):682–682. doi:10.1182/blood-2018-99-117848. PMID: WOS:000454837602060.
  • Ye D, Liu J, Zhou A, Zou Q, Li H, Fu C, Hu H, Huang J, Zhu S, Jin J, et al. Tislelizumab in Asian patients with previously treated locally advanced or metastatic urothelial carcinoma. Cancer Sci. 2021;112:305–13. doi:10.1111/cas.14681. PMID: WOS:000585909300001.
  • Liu SY, Wu YL. Tislelizumab: an investigational anti-PD-1 antibody for the treatment of advanced non-small cell lung cancer (NSCLC). Expert Opin Inv Drug. 2020;29(12):1355–63. doi:10.1080/13543784.2020.1833857. PMID:WOS:000580619700001.
  • Kudo M. Systemic therapy for hepatocellular carcinoma: latest advances. Cancers. 2018;10:412. doi:10.3390/cancers10110412. PMID: WOS:000451307700019.
  • Song YQ, Wu JQ, Chen XC, Lin TY, Cao JN, Liu YY, Zhao YZ, Jin J, Huang HW, Hu JD, et al. A single-arm, multicenter, phase II study of camrelizumab in relapsed or refractory classical Hodgkin lymphoma. Clin Cancer Res. 2019;25:7363–69. doi:10.1158/1078-0432.Ccr-19-1680. PMID: WOS:000509983400013.
  • Qin SK, Ren ZG, Meng ZQ, Chen ZD, Chai XL, Xiong JP, Bai YX, Yang L, Zhu H, Fang WJ, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020;21:571–80. doi:10.1016/s1470-2045(20)30011-5. PMID: WOS:000522625000033.
  • Huang J, Xu JM, Chen Y, Zhuang W, Zhang YP, Chen ZD, Chen J, Zhang HL, Niu ZX, Fan QX, Lin, L., et al. Camrelizumab versus investigator’s choice of chemotherapy as second-line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT): a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2020;21(6):832–42. doi:10.1016/s1470-2045(20)30110-8. PMID: WOS:000544057400034.
  • Fang WF, Yang YP, Ma YX, Hong SD, Lin LZ, He XH, Xiong JP, Li P, Zhao HY, Huang Y, et al. Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: results from two single-arm, phase 1 trials. Lancet Oncol. 2018;19:1338–50. doi:10.1016/s1470-2045(18)30495-9. PMID: WOS:000446052800054.
  • Sun GG, Jia JH, Gao P, Yao XM, Chen MD, Yao WN, Sun L, Wang W. Activity and safety of camrelizumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced non-small-cell lung cancer. J ImmunoTher Cancer. 2020;8:A267–A68. doi:10.1136/jitc-2020-SITC2020.0440. PMID: WOS:000616665300428.
  • Tang BX, Chi ZH, Guo J. Toripalimab for the treatment of melanoma. Expert Opin Biol Th. 2020;20:863–69. doi:10.1080/14712598.2020.1762561. PMID: WOS:000534142800001.
  • Wang FH, Wei XL, Feng JF, Li Q, Xu N, Hu XC, Liao WJ, Jiang Y, Lin XY, Zhang QY, et al. Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase II clinical trial (POLARIS-02). J Clin Onco. 2021;39:704–12. doi:10.1200/jco.20.02712. PMID: WOS:000635371200003.
  • Zan N, Zhang X, Du LY, Lin ZY, Yu DF, Liu J, Gou FS. Case report: toripalimab combined with anlotinib in a patient with metastatic upper tract urothelial carcinoma after pembrolizumab failure. Front Oncol. 2022;12(796407):796407. doi:10.3389/fonc.2022.796407. PMID: WOS:000770970400001.
  • Poh A. Assessing toripalimab in NSCLC. Cancer Discov. 2022;12:1176–77. doi:10.1158/2159-8290.Cd-nb2022-0022. PMID: WOS:000795608300005.
  • Ghidini A, Santangelo D, Vaccaro G, Chillura M, Petrelli F. Cemiplimab in cutaneous squamous cell carcinomas (SCC): an overview and a clinical case. Oral Oncol. 2022;128:105847. doi:10.1016/j.oraloncology.2022.105847. PMID: WOS:000792738900003.
  • Naik PP. Cemiplimab in advanced cutaneous squamous cell carcinoma. Dermatol Ther. 2021;34:e15184. doi:10.1111/dth.15184. PMID: WOS:000715489200001.
  • Ren Z, Shao G, Shen J, Zhang L, Zhu X, Fang W, Sun G, Bai Y, Wu J, Liu L, et al. Phase 2 study of the PD-1 inhibitor serplulimab plus the bevacizumab biosimilar HLX04 in patients with previously treated advanced hepatocellular carcinoma. Liver Cancer. 2022;12(2):116–28. doi:10.1159/000526638. PMID: WOS:000848468700001.
  • Oaknin A, Tinker AV, Gilbert L, Samouelian V, Mathews C, Brown J, Barretina-Ginesta MP, Moreno V, Gravina A, Abdeddaim C, et al. Clinical activity and safety of the anti-PD-1 monoclonal antibody dostarlimab for patients with recurrent or advanced dMMR endometrial cancer. Future Oncol. 2021;17:3781–85. doi:10.2217/fon-2021-0598. PMID: WOS:000687857400001.
  • Liu XH, Yi Y. Sintilimab plus sorafenib: a novel regimen for hepatocellular carcinoma. Immunotherapy-Uk. 2021;13:1387–93. doi:10.2217/imt-2021-0062. PMID: WOS:000708528700001.
  • Lv HL, Tian Y, Li JC, Huang C, Sun BK, Gai CY, Li ZH, Tian ZQ. Neoadjuvant sintilimab plus chemotherapy in resectable locally advanced esophageal squamous cell carcinoma. Front Oncol. 2022;12:864533. doi:10.3389/fonc.2022.864533. PMID: WOS:000795234900001.
  • Zhang L, Lin WH, Tan FW, Li N, Xue Q, Gao SG, Gao YB, He J. Sintilimab for the treatment of non-small cell lung cancer. Biomark Res. 2022;10:23. doi:10.1186/s40364-022-00363-7. PMID: WOS:000786459400001.
  • Deng M. The approval of sintilimab for classical Hodgkin’s lymphoma: views and perspectives of anti-PD-1/PD-L1 antibodies in China. Antib Ther. 2019;2:54–55. doi:10.1093/abt/tbz005. PMID: MEDLINE:33928222.
  • Haddley K. Dostarlimab anti-PD-1 monoclonal antibody treatment of advanced solid tumors. Drug Future. 2019;44:527–34. doi:10.1358/dof.2019.044.07.3023389. PMID: WOS:000478690100002.
  • Song Y, Zhou K, Jin C, Qian Z, Hou M, Fan L, Li F, Ding K, Zhou H, Li X, et al. A phase II study of penpulimab, an anti-PD-1 antibody, in patients with relapsed or refractoryclassic Hodgkin lymphoma (cHL). J Clin Onco. 2021;39(15_suppl):7529–7529. doi:10.1200/JCO.2021.39.15_suppl.7529. PMID: WOS:000708120604126.
  • Lin NJ, Zhang MZ, Bai H, Liu H, Cui J, Ke XY, Zhang HL, Liu LH, Yan DM, Jiang YS, et al. Efficacy and safety of GLS-010 (zimberelimab) in patients with relapsed or refractory classical Hodgkin lymphoma: A multicenter, single-arm, phase II study. Eur J Cancer. 2022;164:117–26. doi:10.1016/j.ejca.2021.07.021. PMID: WOS:000792600200013.
  • Crist M, Balar A. Atezolizumab in invasive and metastatic urothelial carcinoma. Expert Rev Clin Phar. 2017;10:1295–301. doi:10.1080/17512433.2017.1389275. PMID: WOS:000418037400002.
  • Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65. doi:10.1016/s0140-6736(16)32517-x. PMID: WOS:000392801200027.
  • McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, Fong L, Joseph RW, Pal SK, Reeves JA, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24:749–57. doi:10.1038/s41591-018-0053-3. PMID: WOS:000434281300020.
  • Finkelmeier F, Waidmann O, Trojan J. Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev Anticanc. 2018;18:1169–75. doi:10.1080/14737140.2018.1535315. PMID: WOS:000450563700002.
  • Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Wright GS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. New Engl J Med. 2018;379:2108–21. doi:10.1056/NEJMoa1809615. PMID: WOS:000451402500006.
  • Rico GT, Price TJ. Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential. Expert Opin Biol Th. 2018;18:449–57. doi:10.1080/14712598.2018.1444024. PMID: WOS:000428249400009.
  • Barlesi F, Vansteenkiste J, Spigel D, Ishii H, Garassino M, de Marinis F, Ozguroglu M, Szczesna A, Polychronis A, Uslu R, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN lung 200): an open-label, randomised, phase 3 study. Lancet Oncol. 2018;19:1468–79. doi:10.1016/s1470-2045(18)30673-9. PMID: WOS:000449100300044.
  • Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, Venugopal B, Kollmannsberger C, Negrier S, Uemura M, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med. 2019;380:1103–15. doi:10.1056/NEJMoa1816047. PMID: WOS:000461898400006.
  • Roviello G, D’Angelo A, Generali D, Pittacolo M, Ganzinelli M, Iezzi G, de Manzini N, Sobhani N. Avelumab in gastric cancer. Immunotherapy-Uk. 2019;11:759–68. doi:10.2217/imt-2019-0011. PMID: WOS:000469496800002.
  • Antonia S, Goldberg SB, Balmanoukian A, Chaft JE, Sanborn RE, Gupta A, Narwal R, Steele K, Gu Y, Karakunnel JJ, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small-cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 2016;17:299–308. doi:10.1016/s1470-2045(15)00544-6. PMID: WOS:000371234900043.
  • Ferris RL, Haddad R, Even C, Tahara M, Dvorkin M, Ciuleanu TE, Clement PM, Mesia R, Kutukova S, Zholudeva L, et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open -label phase III study. Ann Oncol. 2020;31:942–50. doi:10.1016/j.annonc.2020.04.001. PMID: WOS:000540695500017.
  • Siu LL, Even C, Mesia R, Remenar E, Daste A, Delord JP, Krauss J, Saba NF, Nabell L, Ready NE, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 2019;5:195–203. doi:10.1001/jamaoncol.2018.4628. PMID: WOS:000458630000015.
  • Shimizu T, Nakajima TE, Yamamoto N, Yonemori K, Koyama T, Kondo S, Sunakawa Y, Izawa N, Horie Y, Xiang SL, et al. Phase I study of envafolimab (KN035), a novel subcutaneous single-domain anti-PD-L1 monoclonal antibody, in Japanese patients with advanced solid tumors. Invest New Drug. 2022;40:1021–31. doi:10.1007/s10637-022-01287-7. PMID: WOS:000836752400001.
  • Shen L, Li J, Deng YH, Zhang WJ, Zhou AP, Guo WJ, Yang JW, Yuan Y, Zhu LJ, Qin SK, et al. Envafolimab (KN035) in advanced tumors with mismatch-repair deficiency. J Clin Onco. 2020;38(15_suppl):3021–3021. doi:10.1200/JCO.2020.38.15_suppl.3021. WOS:000560368301283. PMID: WOS:000560368301283.
  • Li J, Deng YH, Zhang WJ, Zhou AP, Guo WJ, Yang JW, Yuan Y, Zhu LJ, Qin SK, Xiang SL, et al. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. J Hematol Oncol. 2021;14:95. doi:10.1186/s13045-021-01095-1. PMID: WOS:000664109200001.
  • Dhillon S, Duggan S. Sugemalimab: first approval. Drugs. 2022;82:593–99. doi:10.1007/s40265-022-01693-4. PMID: WOS:000770214800002.
  • Ribatti D. Edelman’s view on the discovery of antibodies. Immunol Lett. 2015;164(2):72–75. doi:10.1016/j.imlet.2015.02.005. PMID: WOS:000353094900003.
  • Siegel DL. Recombinant monoclonal antibody technology. Transfus Clin Biol. 2002;9:15–22. doi:10.1016/s1246-7820(01)00210-5. PMID: WOS:000174094300003.
  • Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:1–15. doi:10.1155/2012/980250. PMID: WOS:000302595700001.
  • Wen BY, Zhao L, Wang YC, Qiu CN, Xu ZM, Huang KL, Zhu H, Li ZM, Li HJ. Nanobodies targeting the interaction interface of programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-1/PD-L1). Prep Biochem Biotech. 2020;50:252–59. doi:10.1080/10826068.2019.1692217. PMID: WOS:000500447300001.
  • Lim H, Chun J, Jin X, Kim J, Yoon J, No KT. Investigation of protein-protein interactions and hot spot region between PD-1 and PD-L1 by fragment molecular orbital method. Sci Rep-Uk. 2019;9:16727. doi:10.1038/s41598-019-53216-z. PMID: WOS:000496135600005.
  • Chen LP. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4:336–47. doi:10.1038/nri1349. PMID: WOS:000221183300012.
  • Xu JM, Shen J, Gu SZ, Zhang Y, Wu LH, Wu J, Shao GL, Zhang YQ, Xu L, Yin T, et al. Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): a for nonrandomized, open-label, phase II trial. Clin Cancer Res. 2021;27:1003–11. doi:10.1158/1078-0432.Ccr-20-2571. PMID: WOS:000620168400015.
  • Lu M, Zhang PP, Zhang YQ, Li ZW, Gong JF, Li J, Li J, Li Y, Zhang XT, Lu ZH, et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: a multiple-center phase Ib trial. Clin Cancer Res. 2020;26:2337–45. doi:10.1158/1078-0432.Ccr-19-4000. PMID: WOS:000535265900008.
  • Tang BX, Yan XQ, Sheng XA, Si L, Cui CL, Kong Y, Mao LL, Lian B, Bai X, Wang X, et al. Safety and clinical activity with an anti-PD-1 antibody JS001 in advanced melanoma or urologic cancer patients. J Hematol Oncol. 2019;12:7. doi:10.1186/s13045-018-0693-2. PMID: WOS:000455639900001.
  • Yang JL, Dong LH, Yang S, Han XH, Han Y, Jiang SY, Yao JR, Zhang ZS, Zhang SX, Liu P, et al. Safety and clinical efficacy of toripalimab, a PD-1 mAb, in patients with advanced or recurrent malignancies in a phase I study. Eur J Cancer. 2020;130:182–92. doi:10.1016/j.ejca.2020.01.028. PMID: WOS:000535711100019.
  • Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. New Engl J Med. 2015;373:1803–13. doi:10.1056/NEJMoa1510665. PMID: WOS:000364144000004.
  • Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WEE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New Engl J Med. 2015;373:123–35. doi:10.1056/NEJMoa1504627. PMID: WOS:000357598600005.
  • Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. New Engl J Med. 2015;373:1627–39. doi:10.1056/NEJMoa1507643. PMID: WOS:000363317800008.
  • Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. New Engl J Med. 2018;378:2093–104. doi:10.1056/NEJMoa1801946. PMID: WOS:000433428000007.
  • Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H-J, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91. doi:10.1016/s1470-2045(17)30422-9. PMID: WOS:000408873500042.
  • El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH III, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502. doi:10.1016/s0140-6736(17)31046-2. PMID: WOS:000403901800028.
  • Johnson D, Balko J, Compton M, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander M, Bloomer T, et al. Fulminant myocarditis with combination immune checkpoint blockade. New Engl J Med. 2016;375:1749–55. doi:10.1056/NEJMoa1609214. PMID: WOS:000387007300008.
  • Valsecchi ME. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New Engl J Med. 2015;373:1270–1270. doi:10.1056/NEJMc1509660. PMID: WOS:000361635200016.
  • Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. New Engl J Med. 2015;372:2018–28. doi:10.1056/NEJMoa1501824. PMID: WOS:000354809300008.
  • Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–52. doi:10.1016/s1470-2045(18)30351-6. PMID: WOS:000437342400053.
  • Nanda R, Chow LQM, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Onco. 2016;34:2460–67. doi:10.1200/jco.2015.64.8931. PMID: WOS:000381497000005.
  • Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. New Engl J Med. 2017;376:1015–26. doi:10.1056/NEJMoa1613683. PMID: WOS:000396403700006.
  • Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort a of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:397–404. doi:10.1093/annonc/mdy517. PMID: WOS:000465084000012.
  • Scapin G, Yang X, Prosise WW, McCoy M, Reichert P, Johnston JM, Kashi RS, Strickland C. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Molecul Biol. 2015;22:953–58. doi:10.1038/nsmb.3129. PMID: WOS:000366152400007.
  • Zhang T, Song X, Xu L, Ma J, Zhang Y, Gong W, Zhang Y, Zhou X, Wang Z, Wang Y, et al. The binding of an anti-PD-1 antibody to FcγRΙ has a profound impact on its biological functions. Cancer Immunol Immun. 2018;67(7):1079–90. doi:10.1007/s00262-018-2160-x. PMID: WOS:000435591800005.
  • Zhang T, Song XM, Xu LL, Ma J, Zhang YJ, Gong WF, Zhang YL, Zhou XS, Wang ZB, Wang YL, et al. The binding of an anti-PD-1 antibody to FcγRΙ has a profound impact on its biological functions. Cancer Immunol Immun. 2018;67(7):1079–90. doi:10.1007/s00262-018-2160-x. PMID: WOS:000435591800005.
  • Yu R, Wang W, Li T, Li J, Zhao K, Wang W, Liang L, Wu H, Ai T, Huang W, et al. RATIONALE 311: tislelizumab plus concurrent chemoradiotherapy for localized esophageal squamous cell carcinoma. Future Oncol. 2021;17(31):4081–89. doi:10.2217/fon-2021-0632. PMID: WOS:000674048800001.
  • Song Y, Gao Q, Zhang H, Fan L, Zhou J, Zou D, Li W, Yang H, Liu T, Wang Q, et al. Treatment of relapsed or refractory classical Hodgkin lymphoma with the anti-PD-1, tislelizumab: results of a phase 2, single-arm, multicenter study. Leukemia. 2020;34:533–42. doi:10.1038/s41375-019-0545-2. PMID: WOS:000523481800020.
  • Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodriguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. New Engl J Med. 2018;378:2288–301. doi:10.1056/NEJMoa1716948. PMID: WOS:000435099900006.
  • Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20. doi:10.1016/s0140-6736(16)00561-4. PMID: WOS:000375374200035.
  • Horn L, Mansfield AS, Szczesna A, Havel L, Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio M, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. New Engl J Med. 2018;379:2220–29. doi:10.1056/NEJMoa1809064. PMID: WOS:000452259200007.
  • Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, Morise M, Felip E, Andric Z, Geater S, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. New Engl J Med. 2020;383:1328–39. doi:10.1056/NEJMoa1917346. PMID: WOS:000575616600009.
  • Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, Kuter I, Nanda R, Cassier PA, Delord JP, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer a phase 1 study. JAMA Oncol. 2019;5:74–82. doi:10.1001/jamaoncol.2018.4224. PMID: WOS:000455776100015.
  • De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014;32:263–70. doi:10.1016/j.tibtech.2014.03.001. PMID: WOS:000335625700006.
  • De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne R, Muyldermans S, Wyns L. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. P Natl Acad Sci Usa. 2006;103:4586–91. doi:10.1073/pnas.0505379103. PMID: WOS:000236362600048.
  • Nguyen VK, Su C, Muyldermans S, van der Loo W. Heavy-chain antibodies in camelidae; a case of evolutionary innovation. Immunogenet. 2002;54:39–47. doi:10.1007/s00251-002-0433-0. PMID: WOS:000175617900005.
  • Barderas R, Desmet J, Timmerman P, Meloen R, Casal JI. Affinity maturation of antibodies assisted by in silico modeling. Proc Natl Acad Sci USA. 2008;105(26):9029–34. doi:10.1073/pnas.0801221105. PMID: WOS:000257354400042.
  • Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol. 2007;25:1171–76. doi:10.1038/nbt1336. PMID: WOS:000250226600029.
  • Barderas R, Shochat S, Timmerman P, Hollestelle MJ, Martinez-Torrecuadrada JL, Hoeppener JWM, Altschuh D, Meloen R, Casal JI. Designing antibodies for the inhibition of gastrin activity in tumoral cell lines. Int J Cancer. 2008;122(10):2351–59. doi:10.1002/ijc.23395. PMID: WOS:000254983100024.
  • Lippow SM, Tidor B. Progress in computational protein design. Curr Opin Biotechnol. 2007;18:305–11. doi:10.1016/j.copbio.2007.04.009. PMID: WOS:000249980400003.
  • Shin J, Raissi S, Phelan P, Bullock PA. Rational design of a nivolumab-based ANTI-PD-1 single chain variable fragment that blocks the interaction between PD-1 expressed on T-CELLS and PD-L1 on CHO cells. Protein Expres Purif. 2023;202:106196. doi:10.1016/j.pep.2022.106196. PMID: WOS:000917702900001.
  • Radaev S, Sun P. Recognition of immunoglobulins by Fcγ receptors. Molecular Immunol. 2002;38(14):1073–83. doi:10.1016/s0161-5890(02)00036-6. PMID: WOS:000175986600008.
  • Yamaguchi Y, Barb AW. (2020). A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology, 30(4):214–225. doi:10.1093/glycob/cwz068.
  • Yi M, Zheng XL, Niu MK, Zhu SL, Ge H, Wu KM. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21:28. doi:10.1186/s12943-021-01489-2. PMID: WOS:000745440900002.
  • Wang Q, Cao YL, Shen LJ, Xiao TR, Cao RY, Wei SK, Tang M, Du LY, Wu HY, Wu B, et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci Adv. 2022;8(34):eabq4722. doi:10.1126/sciadv.abq4722. PMID: WOS:000847345000038.