3,816
Views
2
CrossRef citations to date
0
Altmetric
Report

Selection of bispecific antibodies with optimal developability using FcRn‑pH‑HPLC as an optimized FcRn affinity chromatography method

, , , , , & show all
Article: 2245519 | Received 04 May 2023, Accepted 03 Aug 2023, Published online: 20 Aug 2023

References

  • Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023;15:2153410. doi:10.1080/19420862.2022.2153410.
  • Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20:838–15. doi:10.1016/j.drudis.2015.02.008.
  • Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Müller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J, et al. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs. 2019;11(5):899–918. doi:10.1080/19420862.2019.1616506. PMC6601565.
  • Rogala B, Freyer CW, Ontiveros EP, Griffiths EA, Wang ES, Wetzler M. Blinatumomab: Enlisting serial killer T-cells in the war against hematologic malignancies. Expert Opin Biol Ther. 2015;15(6):895–908. PMC4994468. doi:10.1517/14712598.2015.1041912.
  • Pahl JHW, Koch J, Götz JJ, Arnold A, Reusch U, Gantke T, Rajkovic E, Treder M, Cerwenka A. CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells. Cancer Immunol Res. 2018;6(5):517–27. doi:10.1158/2326-6066.Cir-17-0550.
  • Brazel D, Nagasaka M. Spotlight on amivantamab (JNJ-61186372) for EGFR exon 20 insertions positive non-small cell lung cancer. Lung Cancer (Auckl). 2021;12:133–38. doi:10.2147/LCTT.S337861.
  • Goulet DR, Watson MJ, Tam SH, Zwolak A, Chiu ML, Atkins WM, Nath A. Toward a combinatorial approach for the prediction of IgG half-life and clearance. Drug Metab Dispos. 2018;46:1900–07. PMC7370997. doi:10.1124/dmd.118.081893.
  • Leipold D, Prabhu S. Pharmacokinetic and pharmacodynamic considerations in the design of therapeutic antibodies. Clin Transl Sci. 2019;12(2):130–39. PMC6440574 financial interest in Hoffman‐La Roche. doi:10.1111/cts.12597.
  • Schlothauer T, Rueger P, Stracke JO, Hertenberger H, Fingas F, Kling L, Emrich T, Drabner G, Seeber S, Auer J, et al. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. MAbs. 2013;5(4):576–86. doi: 10.4161/mabs.24981.
  • Rath T, Baker K, Dumont JA, Peters RT, Jiang H, Qiao S-W, Lencer WI, Pierce GF, Blumberg RS. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol. 2015;35:235–54. doi:10.3109/07388551.2013.834293.
  • Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature. 1989;337(6203):184–87. doi:10.1038/337184a0.
  • Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The neonatal Fc receptor (FcRn): A misnomer? Front Immunol. 2019;10:1540. PMC6636548. doi:10.3389/fimmu.2019.01540.
  • Akilesh S, Christianson GJ, Roopenian DC, Shaw AS. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol. 2007;179:4580. doi:10.4049/jimmunol.179.7.4580.
  • Montoyo HP, Vaccaro C, Hafner M, Ober RJ, Mueller W, Ward ES. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci U S A. 2009;106:2788–93. PMC2650344. doi:10.1073/pnas.0810796106.
  • Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol. 2004;172:2021–29. doi:10.4049/jimmunol.172.4.2021.
  • Abdiche YN, Yeung YA, Chaparro-Riggers J, Barman I, Strop P, Chin SM, Pham A, Bolton G, McDonough D, Lindquist K, et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs. 2015;7:331–43. PMC4622529. doi:10.1080/19420862.2015.1008353.
  • Oganesyan V, Damschroder MM, Cook KE, Li Q, Gao C, Wu H, Dall’acqua WF. Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem. 2014;289:7812–24. doi:10.1074/jbc.m113.537563.
  • Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ. Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry. 1995;34:14649–57. doi:10.1021/bi00045a005.
  • Ober RJ, Martinez C, Lai X, Zhou J, Ward ES. Exocytosis of IgG as mediated by the receptor, FcRn: An analysis at the single-molecule level. Proc Natl Acad Sci U S A. 2004;101:11076–81. doi:10.1073/pnas.0402970101.
  • Ward ES, Zhou J, Ghetie V, Ober RJ. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol. 2003;15(2):187–95. doi:10.1093/intimm/dxg018.
  • Vaughn DE, Bjorkman PJ. Structural basis of Ph-dependent antibody binding by the neonatal Fc receptor. Structure. 1998;6(1):63–73. doi:10.1016/s0969-2126(98)00008-2.
  • Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O’Hara DM, Tchistiakova L, Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs. 2018;10(1):81–94. PMC5800364. doi:10.1080/19420862.2017.1389355.
  • Schoch A, Kettenberger H, Mundigl O, Winter G, Engert J, Heinrich J, Emrich T. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc Natl Acad Sci U S A. 2015;112:5997–6002. doi:10.1073/pnas.1408766112.
  • Geuijen KPM, Oppers-Tiemissen C, Egging DF, Simons PJ, Boon L, Schasfoort RBM, Eppink MHM. Rapid screening of IgG quality attributes - effects on Fc receptor binding. FEBS Open Bio. 2017;7(10):1557–74. doi:10.1002/2211-5463.12283.
  • Falck D, Thomann M, Lechmann M, Koeleman CAM, Malik S, Jany C, Wuhrer M, Reusch D. Glycoform-resolved pharmacokinetic studies in a rat model employing glycoengineered variants of a therapeutic monoclonal antibody. MAbs. 2021;13(1):1865596. PMC7781607. doi:10.1080/19420862.2020.1865596.
  • Leabman MK, Meng YG, Kelley RF, DeForge LE, Cowan KJ, Iyer S. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys. MAbs. 2013;5(6):896–903. doi:10.4161/mabs.26436.
  • Chen X, Liu YD, Flynn GC. The effect of Fc glycan forms on human IgG2 antibody clearance in humans. Glycobiology. 2009;19(3):240–49. doi:10.1093/glycob/cwn120.
  • Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–59. doi:10.1093/glycob/cwr027.
  • Suzuki T, Hashii N, Tada M, Ishii-Watabe A. The influence of antibody engineering on Fc conformation and Fc receptor binding properties: analysis of FcRn-binding engineered antibodies and an Fc fusion protein. MAbs. 2021;13(1):1923366. PMC8158039. doi:10.1080/19420862.2021.1923366.
  • Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, Hochman J, Prueksaritanont T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos. 2011;39(9):1469–77. doi:10.1124/dmd.111.039453.
  • Vaughn DE, Bjorkman PJ. High-affinity binding of the neonatal Fc receptor to its IgG ligand requires receptor immobilization. Biochemistry. 1997;36(31):9374–80. doi:10.1021/bi970841r.
  • Martin WL, Bjorkman PJ. Characterization of the 2: 1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochemistry. 1999;38(39):12639–47. doi:10.1021/bi9913505.
  • Gurbaxani B, Dela Cruz LL, Chintalacharuvu K, Morrison SL. Analysis of a family of antibodies with different half-lives in mice fails to find a correlation between affinity for FcRn and serum half-life. Mol Immunol. 2006;43:1462–73. doi:10.1016/j.molimm.2005.07.032.
  • Pollastrini J, Dillon TM, Bondarenko P, Chou RY. Field flow fractionation for assessing neonatal Fc receptor and Fcγ receptor binding to monoclonal antibodies in solution. Anal Biochem. 2011;414:88–98. doi:10.1016/j.ab.2011.03.001.
  • Huber AH, Kelley RF, Gastinel LN, Bjorkman PJ. Crystallization and stoichiometry of binding of a complex between a rat intestinal Fc receptor and Fc. J Mol Biol. 1993;230:1077–83. doi:10.1006/jmbi.1993.1220.
  • Datta-Mannan A, Chow CK, Dickinson C, Driver D, Lu J, Witcher DR, Wroblewski VJ. FcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys. Drug Metab Dispos. 2012;40(8):1545–55. doi:10.1124/dmd.112.045864.
  • Raghavan M, Wang Y, Bjorkman PJ. Effects of receptor dimerization on the interaction between the class I major histocompatibility complex-related Fc receptor and IgG. Proc Natl Acad Sci U S A. 1995;92:11200–04. PMC40599. doi:10.1073/pnas.92.24.11200.
  • Gurbaxani BM, Morrison SL. Development of new models for the analysis of Fc–FcRn interactions. Mol Immunol. 2006;43(9):1379–89. doi:10.1016/j.molimm.2005.08.002.
  • Gurbaxani B. Mathematical modeling as accounting: predicting the fate of serum proteins and therapeutic monoclonal antibodies. Clin Immunol. 2007;122:121–24. doi:10.1016/j.clim.2006.10.001.
  • Gahoual R, Heidenreich AK, Somsen GW, Bulau P, Reusch D, Wuhrer M, Haberger M. Detailed characterization of monoclonal antibody receptor interaction using affinity liquid chromatography hyphenated to native mass spectrometry. Anal Chem. 2017;89:5404–12. doi:10.1021/acs.analchem.7b00211.
  • Gstöttner C, Hook M, Christopeit T, Knaupp A, Schlothauer T, Reusch D, Haberger M, Wuhrer M, Domínguez-Vega E. Affinity capillary electrophoresis–mass spectrometry as a tool to unravel proteoform-specific antibody–receptor interactions. Anal Chem. 2021;93:15133–41. doi:10.1021/acs.analchem.1c03560.
  • Nieto Y, Banerjee P, Kaur I, Bassett R, Kerbauy L, Basar R, Kaplan M, Griffin L, Esqueda D, Ganesh C, et al. Abstract CT003: Innate cell engager (ICE®) AFM13 combined with preactivated and expanded cord blood (CB)-derived NK cells for patients with refractory/relapsed CD30+ lymphoma. Cancer Res. 2022;82(12_Supplement):CT003–CT003. doi:10.1158/1538-7445.AM2022-CT003. CT003.
  • Saavedra Santa Gadea O, Garralda E, Lopez JS, Awad MM, Thomas JS, Tiu CD, Morales-Espinosa D, Raab C, Rehbein B, Hintzen G, et al. A phase 1/2a open label, multicenter study to assess the safety, tolerability, pharmacokinetics, and efficacy of AFM24 in patients with advanced solid cancers: study design and rationale. JCO. 2022;40(16_suppl):TPS2672–TPS2672. doi:10.1200/JCO.2022.40.16_suppl.TPS2672. TPS2672.
  • El-Khoueiry AB, Song PY, Rubel J, Pourang DY, Raab C, Hintzen G, Emig M, Nava-Parada P. The combination of CD16A/EGFR innate cell engager, AFM24, with SNK01 autologous natural killer cells in patients with advanced solid tumors. J Clin Oncol. 2022;40(16_suppl):TPS2675–TPS2675. TPS2675. doi:10.1200/JCO.2022.40.16_suppl.TPS2675.
  • Saavedra Santa Gadea O, Christenson E, El-Khoueiry AB, Cervantes A, Raab C, Gaertner U, Pietzko K, Hintzen G, Ravenstijn P, Morales-Espinosa D, et al. AFM24 in combination with atezolizumab in patients with advanced EGFR-expressing solid tumors: Phase 1/2a study design and rationale. JCO. 2022;40(16_suppl):TPS2673–TPS2673. doi:10.1200/JCO.2022.40.16_suppl.TPS2673. TPS2673.
  • Choe-Juliak C, Alexis KM, Schwarz S, Garcia L, Sawas A. A phase II open-label multicenter study to assess the efficacy and safety of AFM13 in patients with relapsed or refractory CD30-positive peripheral T-cell lymphoma or transformed mycosis fungoides: The REDIRECT study design and rationale. J Clin Oncol. 2020;38(15_suppl):TPS3148–TPS3148. TPS3148. doi:10.1200/JCO.2020.38.15_suppl.TPS3148.
  • Schiel JE, Turner A, Mouchahoir T, Yandrofski K, Telikepalli S, King J, DeRose P, Ripple D, Phinney K. The NISTmAb Reference Material 8671 value assignment, homogeneity, and stability. Anal Bioanal Chem. 2018;410(8):2127–39. PMC5830482. doi:10.1007/s00216-017-0800-1.
  • Cymer F, Schlothauer T, Knaupp A, Beck H. Evaluation of an FcRn affinity chromatographic method for IgG1-type antibodies and evaluation of IgG variants. Bioanalysis. 2017;9(17):1305–17. doi:10.4155/bio-2017-0109.
  • US Food and Drug Administration. Rituxan - Highlights of prescribing information. Silver Spring (MD): Center for Drug Evaluation and Research; 2021 Dec 17 [Accessed July 2023]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/103705s5467lbl.pdf.
  • US Food and Drug Administration. Humira - Highlights of prescribing information. Silver Spring (MD): Center for Drug Evaluation and Research; 2020 Dec 16 [Accessed July 2023]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125057s418s419lbl.pdf.
  • US Food and Drug Administration. Margenza - Highlights of prescribing information. Silver Spring (MD): Center for Drug Evaluation and Research; 2023 May 23 [Accessed July 2023]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761150s005lbl.pdf.
  • US Food and Drug Administration. Imfinzi - Highlights of prescribing information. Silver Spring (MD): Center for Drug Evaluation and Research; 2023 Jun 16 [Accessed July 2023]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761069s042lbl.pdf.
  • US Food and Drug Administration. Erbitux - Highlights of prescribing information. Silver Spring (MD): Center for Drug Evaluation and Research; 2020 Nov 10 [Accessed July 2023]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125084s275lbl.pdf.
  • Ding C, Xu J, Li J. ABT-874, a fully human monoclonal anti-IL-12/IL-23 antibody for the potential treatment of autoimmune diseases. Curr Opin Investig Drugs. 2008;9(5):515–22.
  • Pabst T, Vey N, Adès L, Bacher U, Bargetzi M, Fung S, Gaidano G, Gandini D, Hultberg A, Johnson A, et al. Results from a phase I/II trial of cusatuzumab combined with azacitidine in patients with newly diagnosed acute myeloid leukemia who are ineligible for intensive chemotherapy. Haematologica. 2023;108(7):1793–802. doi:10.3324/haematol.2022.281563. PMC10316251.
  • Moore GL, Bernett MJ, Rashid R, Pong EW, Nguyen DT, Jacinto J, Eivazi A, Nisthal A, Diaz JE, Chu SY, et al. A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods. 2019;154:38–50. doi:10.1016/j.ymeth.2018.10.006.
  • Reiter Y, Brinkmann U, Webber KO, Jung SH, Lee B, Pastan I. Engineering interchain disulfide bonds into conserved framework regions of Fv fragments: improved biochemical characteristics of recombinant immunotoxins containing disulfide-stabilized Fv. Protein Eng. 1994;7(5):697–704. doi:10.1093/protein/7.5.697.
  • Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs. 2022;14(1):2014296. PMC8765076. doi:10.1080/19420862.2021.2014296.
  • Hintzen G, Dulat HJ, Rajkovic E. Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Front Oncol. 2022;12:892212. PMC9518002. doi:10.3389/fonc.2022.892212.
  • Wu Y, Yi M, Zhu S, Wang H, Wu K. Recent advances and challenges of bispecific antibodies in solid tumors. Exp Hematol Oncol. 2021;10(1):56. PMC8684149. doi:10.1186/s40164-021-00250-1.
  • Zhang W, Wang H, Feng N, Li Y, Gu J, Wang Z. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib Ther. 2023;6(1):13–29. PMC9847343. doi:10.1093/abt/tbac029.
  • Gao X, Ji JA, Veeravalli K, Wang YJ, Zhang T, McGreevy W, Zheng K, Kelley RF, Laird MW, Liu J, et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. J Pharm Sci. 2015;104:368–77. doi:10.1002/jps.24136.
  • Booth BJ, Ramakrishnan B, Narayan K, Wollacott AM, Babcock GJ, Shriver Z, Viswanathan K. Extending human IgG half-life using structure-guided design. MAbs. 2018;1–13. doi:10.1080/19420862.2018.1490119.
  • Stracke J, Emrich T, Rueger P, Schlothauer T, Kling L, Knaupp A, Hertenberger H, Wolfert A, Spick C, Lau W, et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. MAbs. 2014;6(5):1229–42. doi: 10.4161/mabs.29601.
  • Grevys A, Frick R, Mester S, Flem-Karlsen K, Nilsen J, Foss S, Sand KMK, Emrich T, Fischer JAA, Greiff V, et al. Antibody variable sequences have a pronounced effect on cellular transport and plasma half-life. iScience. 2022;25(2):103746. doi:10.1016/j.isci.2022.103746.
  • Poiron C, Wu Y, Ginestoux C, Ehrenmann F, Duroux P, Lefranc M. Imgt/mab-DB: the IMGT® database for therapeutic monoclonal antibodies. Montpellier (France): The International Immunogenetics Information System; 2010 Sep 21 [Accessed July 2023] https://www.imgt.org/IMGTposters/SFI2010_Proceedings_p242.pdf.