956
Views
0
CrossRef citations to date
0
Altmetric
Report

Unique epitope–antibody interactions in the intrinsically disordered proteoglycan-like domain of human carbonic anhydrase IX defined by high-resolution NMR combined with yeast surface display

, , , , , , , , , & show all
Article: 2248672 | Received 08 Dec 2022, Accepted 11 Aug 2023, Published online: 25 Aug 2023

References

  • Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem. 2004;19(3):199–15. PMID: 15499993. doi:10.1080/14756360410001689540.
  • Thiry A, Dogne JM, Masereel B, Supuran CT. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci. 2006;27:566–73. doi:10.1016/j.tips.2006.09.002. PMID: 16996620.
  • Ihnatko R, Kubes M, Takacova M, Sedlakova O, Sedlak J, Pastorek J, Kopacek J, Pastorekova S. Extracellular acidosis elevates carbonic anhydrase IX in human glioblastoma cells via transcriptional modulation that does not depend on hypoxia. Int J Oncol. 2006;29:1025–33. PMID: 16964400 https://www.ncbi.nlm.nih.gov/pubmed/16964400.
  • Andreucci E, Peppicelli S, Carta F, Brisotto G, Biscontin E, Ruzzolini J, Bianchini F, Biagioni A, Supuran CT, Calorini L. Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis. J Mol Med (Berl). 2017;95:1341–53. doi:10.1007/s00109-017-1590-9. PMID: 28929255.
  • Becker HM, Deitmer JW. Transport metabolons and acid/base balance in tumor cells. Cancers Basel. 2020;12(4):899. PMID: 32272695. doi:10.3390/cancers12040899.
  • Pastorekova S, Gillies RJ. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019;38:65–77. doi:10.1007/s10555-019-09799-0. PMID: 31076951.
  • De Simone G, Supuran CT. Carbonic anhydrase IX: Biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta. 2010;1804:404–09. doi:10.1016/j.bbapap.2009.07.027. PMID: 19679200.
  • Zavada J, Zavadova Z, Pastorek J, Biesova Z, Jezek J, Velek J. Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer. 2000;82(11):1808–13. PMID: 10839295. doi:10.1054/bjoc.2000.1111.
  • Csaderova L, Debreova M, Radvak P, Stano M, Vrestiakova M, Kopacek J, Pastorekova S, Svastova E. The effect of carbonic anhydrase IX on focal contacts during cell spreading and migration. Front Physiol. 2013;4:271. doi:10.3389/fphys.2013.00271. PMID: 24101905.
  • Swayampakula M, McDonald PC, Vallejo M, Coyaud E, Chafe SC, Westerback A, Venkateswaran G, Shankar J, Gao G, Laurent EMN, et al. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene. 2017;36(45):6244–61. doi:10.1038/onc.2017.219. PMID: 28692057.
  • Opavsky R, Pastorekova S, Zelnik V, Gibadulinova A, Stanbridge EJ, Zavada J, Kettmann R, Pastorek J. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics. 1996;33(3):480–87. PMID: 8661007. doi:10.1006/geno.1996.0223.
  • Langella E, Buonanno M, Vullo D, Dathan N, Leone M, Supuran CT, De Simone G, Monti SM. Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell Mol Life Sci. 2018;75:3283–96. doi:10.1007/s00018-018-2798-8. PMID: 29564477.
  • Jorda J, Xue B, Uversky VN, Kajava AV. Protein tandem repeats - the more perfect, the less structured. FEBS J. 2010;277(12):2673–82. PMID: 20553501. doi:10.1111/j.1742-464X.2010.07684.x.
  • Langella E, Buonanno M, De Simone G, Monti SM. Intrinsically disordered features of carbonic anhydrase IX proteoglycan-like domain. Cell Mol Life Sci. 2021;78:2059–67. doi:10.1007/s00018-020-03697-3. PMID: 33201250.
  • Lenferink AEG, McDonald PC, Cantin C, Grothe S, Gosselin M, Baardsnes J, Banville M, Lachance P, Robert A, Cepero-Donates Y, et al. Isolation and characterization of monoclonal antibodies against human carbonic anhydrase-IX. MAbs. 2021;13(1):1999194. doi:10.1080/19420862.2021.1999194. PMID: 34806527.
  • Sheff JG, Kelly JF, Robotham A, Sulea T, Malenfant F, L’Abbe D, Duchesne M, Pelletier A, Lefebvre J, Acel A, et al. Hydrogen-deuterium exchange mass spectrometry reveals three unique binding responses of mAbs directed to the catalytic domain of hCAIX. MAbs. 2021;13:1997072. doi:10.1080/19420862.2021.1997072. PMID: 34812124.
  • Pardi A, Billeter M, Wuethrich K. Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein. J Mol Biol. 1984;180(3):741–5110.1016/0022-2836(84)90035-4
  • Ota M, Koike R, Amemiya T, Tenno T, Romero PR, Hiroaki H, Dunker AK, Fukuchi S. An assignment of intrinsically disordered regions of proteins based on NMR structures. J Struct Biol. 2013;181:29–36. doi:10.1016/j.jsb.2012.10.017. PMID: 23142703.
  • Pascal SM. NMR primer: An HSQC-based approach with vector animations. West Sussex, UK: IM Publications LLP; 2008. p. 31.
  • Pervushin K, Riek R, Wider G, Wuthrich K. Attenuated T 2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997;94(23):12366–71. PMID: 9356455. doi:10.1073/pnas.94.23.12366.
  • Salzmann MW, Wider G, Pervushin K, Senn H, Wüthrich K. TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J Am Chem Soc. 1999;121(4):844–48. doi:10.1021/ja9834226.
  • Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, Warnaar SO. Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38(4):489–94. PMID: 2428759. doi:10.1002/ijc.2910380406.
  • Xu C, Lo A, Yammanuru A, Tallarico AS, Brady K, Murakami A, Barteneva N, Zhu Q, Marasco WA. Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology. PLoS One. 2010;5(3):e9625. PMID: 20224781. doi:10.1371/journal.pone.0009625.
  • Stravinskiene D, Imbrasaite A, Petrikaite V, Matulis D, Matuliene J, Zvirbliene A. New monoclonal antibodies for a selective detection of membrane-associated and soluble forms of carbonic anhydrase IX in human cell Lines and biological samples. Biomolecules. 2019;9(8):304. PMID: 31349673. doi:10.3390/biom9080304.
  • Král V, Mader P, Collard R, Fábry M, Horejsí M, Rezácová P, Kozísek M, Závada J, Sedlácek J, Rulísek L, et al. Stabilization of antibody structure upon association to a human carbonic anhydrase IX epitope studied by X-ray crystallography, microcalorimetry, and molecular dynamics simulations. Proteins. 2008;71(3):1275–87. doi:10.1002/prot.21821. PMID: 18041760.
  • Ames S, Pastorekova S, Becker HM. The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget. 2018;9:27940–57. doi:10.18632/oncotarget.25371. PMID: 29963253.
  • DiMaio J, Gibbs B, Munn D, Lefebvre J, Ni F, Konishi Y. Bifunctional thrombin inhibitors based on the sequence of hirudin45-65. J Biol Chem. 1990;265(35):21698–703. PM:2254323. doi:10.1016/S0021-9258(18)45796-1.
  • Maraganore JM, Bourdon P, Jablonski J, Ramachandran KL, Fenton JW. Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochemistry. 1990;29:7095–101. doi:10.1021/bi00482a021. PM:2223763.
  • Alan SI, Smyrlaki I, Rosa J, Grevys A, Bratlie D, Bratlie D, Sandlie I, Michaelsen TE, Andersen JT, Högberg B. Inger Sandlie, Terje Einar Michaelsen, Jan Terje Andersen and Björn Högberg. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nature Nanotech. 2019;14(2):184–90. doi:10.1038/s41565-018-0336-3.
  • Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285–98. doi:10.1038/nrm.2017.7. PMID: 28225081.
  • Abbott WM, Damschroder MM, Lowe DC. Current approaches to fine mapping of antigen-antibody interactions. Immunology. 2014;142:526–35. doi:10.1111/imm.12284. PMID: 24635566.
  • Nilvebrant J, Rockberg J. An Introduction to epitope mapping. Methods Mol Biol. 2018;1785:1–10. doi:10.1007/978-1-4939-7841-0_3. PMID: 29714010.
  • Sheff J, Wang P, Xu P, Arbour M, Masson L, van Faassen H, Hussack G, Kemmerich K, Brunette E, Stanimirovic D, et al. Defining the epitope of a blood–brain barrier crossing single domain antibody specific for the type 1 insulin-like growth factor receptor. Sci Rep. 2021;11(1):4284. doi:10.1038/s41598-021-83198-w. PMID: 33608571.
  • Simonelli L, Pedotti M, Bardelli M, Jurt S, Zerbe O, Varani L. Mapping antibody epitopes by solution NMR spectroscopy: Practical considerations. Methods Mol Biol. 2018;1785:29–51. doi:10.1007/978-1-4939-7841-0_3. PMID: 29714010.
  • King MT, Brooks CL. Methods in molecular Biology. Epitope mapping of antibody-antigen interactions with X-ray crystallography. Methods Mol Biol. 2018;1785:13–28. doi:10.1007/978-1-4939-7841-0_3. PMID: 29714010.
  • Menting JG, Lawrence CF, Kong GK, Margetts MB, Ward CW, Lawrence MC. Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like growth factor hybrid receptors. Structure. 2015;23(7):1271–82. PMID: 26027733. doi:10.1016/j.str.2015.04.016.
  • Morales RA, MacRaild CA, Seow J, Krishnarjuna B, Drinkwater N, Rouet R, Anders RF, Christ D, McGowan S, Norton RS. Structural basis for epitope masking and strain specificity of a conserved epitope in an intrinsically disordered malaria vaccine candidate. Sci Rep. 2015;5:10103. doi:10.1038/srep10103. PMID: 25965408.
  • Dunker AK, Oldfield CJ. Back to the future: Nuclear magnetic resonance and bioinformatics studies on intrinsically disordered proteins. Adv Exp Med Biol. 2015;870:1–34. doi:10.1007/978-3-319-20164-1_1. PMID: 26387098.
  • Bracken C, Carr PA, Cavanagh J, Palmer AG. Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J Mol Biol. 1999;285(5):2133–46. PM:9925790. doi:10.1006/jmbi.1998.2429.
  • Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ. Protein NMR spectroscopy: principles and practice. San Diego, USA: Academic Press; 1996.
  • Kay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989;28(23):8972–79. PMID: 2690953. doi:10.1021/bi00449a003.
  • Weisemann R, Ruterjans H, Bermel W. 3D triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins. J Biomol NMR. 1993;3(1):113–20. PMID: 8448431. doi:10.1007/BF00242479.
  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRpipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3):277–93. PM:8520220. doi:10.1007/BF00197809.
  • Johnson BA, Blevins RA. NMRview: A computer program for the visualization and analysis of NMR data. J Biomol NMR. 1994;4:603–14. doi:10.1007/BF00404272. PMID: 22911360.
  • Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol. 2003;21:163–70. doi:10.1038/nbt785. PMID: 12536217.
  • Cochran JR, Kim YS, Olsen MJ, Bhandari R, Wittrup KD. Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods. 2004;287:147–58. doi:10.1016/j.jim.2004.01.024. PMID: 15099763.