3,434
Views
1
CrossRef citations to date
0
Altmetric
Report

Mammalian display to secretion switchable libraries for antibody preselection and high throughput functional screening

, , , , , , & ORCID Icon show all
Article: 2251190 | Received 25 May 2023, Accepted 20 Aug 2023, Published online: 30 Aug 2023

References

  • Gérard A, Woolfe A, Mottet G, Reichen M, Castrillon C, Menrath V, Ellouze S, Poitou A, Doineau R, Briseno-Roa L, et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat Biotechnol. 2020;38(6):715–10. doi:10.1038/s41587-020-0466-7.
  • Liu G, Zeng H, Mueller J, Carter B, Wang Z, Schilz J, Horny G, Birnbaum ME, Ewert S, Gifford DK, et al. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics. 2020;36(7):2126–33. doi:10.1093/bioinformatics/btz895.
  • Wang Y, Jin R, Shen B, Li N, Zhou H, Wang W, Zhao Y, Huang M, Fang P, Wang S, et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. Sci Adv. 2021;7(24):3839–50. doi:10.1126/sciadv.abe3839.
  • Zhang H, Yea K, Xie J, Ruiz D, Wilson IA, Lerner RA. Selecting agonists from single cells infected with combinatorial antibody libraries. Chem Biol. 2013;20(5):734–41. doi:10.1016/j.chembiol.2013.04.012.
  • Nehlsen K, Schucht R, da Gama-Norton L, Krömer W, Baer A, Cayli A, Hauser H, Wirth D. Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol. 2009;9(1):1–12. doi:10.1186/1472-6750-9-100.
  • Eguchi A, Nakakido M, Nagatoishi S, Kuroda D, Tsumoto K, Nagamune T, Kawahara M. An epitope-directed antibody affinity maturation system utilizing mammalian cell survival as readout. Biotechnol Bioeng. 2019;116(7):1742–51. doi:10.1002/bit.26965.
  • Matreyek KA, Stephany JJ, Chiasson MA, Hasle N, Fowler DM. An improved platform for functional assessment of large protein libraries in mammalian cells. Nucleic Acids Res. 2020;48:1–12. doi:10.1093/nar/gkz910.
  • Robertson N, Lopez-Anton N, Gurjar SA, Khalique H, Khalaf Z, Clerkin S, Leydon VR, Parker-Manuel R, Raeside A, Payne T, et al. Development of a novel mammalian display system for selection of antibodies against membrane proteins. J Biol Chem. 2020;295(52):18436–48. doi:10.1074/jbc.RA120.015053.
  • Smith ES, Zauderer M. Antibody library display on a mammalian virus vector: combining the advantages of both phage and yeast display into one technology. Curr Drug Discov Technol. 2014;11(1):48–55. doi:10.2174/157016381101140124163634.
  • Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321–34. doi:10.1038/nrg3686.
  • Parthiban K, Perera RL, Sattar M, Huang Y, Mayle S, Masters E, Griffiths D, Surade S, Leah R, Dyson MR, et al. A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing. MAbs. 2019;11(5):884–98. doi:10.1080/19420862.2019.1618673.
  • Parola C, Neumeier D, Friedensohn S, Csepregi L, Di Tacchio M, Mason DM, Reddy ST. Antibody discovery and engineering by enhanced CRISPR-Cas9 integration of variable gene cassette libraries in mammalian cells. MAbs. 2019;11(8):1367–80. doi:10.1080/19420862.2019.1662691.
  • Zhou C, Jacobsen FW, Cai L, Chen Q, Shen WD. Development of a novel mammalian cell surface antibody display platform. MAbs. 2010;2(5):508–18. doi:10.4161/mabs.2.5.12970.
  • Luo R, Zhao Y, Fan Y, An L, Jiang T, Ma S, Hang H. High efficiency CHO cell display-based antibody maturation. Sci Rep. 2020;10(1):1–10. doi:10.1038/s41598-020-65044-7.
  • Jia JY, Yu D, Tian X-L, Li H-X, Zhou X-C, Kong Y, Zhang W, Zhang L, Lei C, Yang Z-L, et al. A novel and effective approach to generate germline-like monoclonal antibodies by integration of phage and mammalian cell display platforms. Acta Pharmacol Sin. 2022;43(4):954–62. doi:10.1038/s41401-021-00707-3.
  • Durrant MG, Fanton A, Tycko J, Hinks M, Chandrasekaran SS, Perry NT, Schaepe J, Du PP, Lotfy P, Bassik MC, et al. Large-scale discovery of recombinases for integrating DNA into the human genome. bioRxiv. 2021;2021–11. https://www.biorxiv.org/content/10.1101/2021.11.05.467528v2%0Ahttps://www.biorxiv.org/content/10.1101/2021.11.05.467528v2.abstract.
  • Huhtinen O, Salbo R, Lamminmäki U, Prince S. Selection of biophysically favorable antibody variants using a modified Flp-in CHO mammalian display platform. Front Bioeng Biotechnol. 2023;11:11. doi:10.3389/fbioe.2023.1170081.
  • Segaliny AI, Jayaraman J, Chen X, Chong J, Luxon R, Fung A, Fu Q, Jiang X, Rivera R, Ma X, et al. A high throughput bispecific antibody discovery pipeline. Commun Biol. 2023;6(1):380. doi:10.1038/s42003-023-04746-w.
  • Waldmeier L, Hellmann I, Gutknecht CK, Wolter FI, Cook SC, Reddy ST, Grawunder U, Beerli RR. Transpo-mAb display: Transposition-mediated B cell display and functional screening of full-length IgG antibody libraries. MAbs. 2016;8(4):726–40. doi:10.1080/19420862.2016.1160990.
  • Nguyen AW, Le KC, Maynard JA. Identification of high affinity HER2 binding antibodies using CHO Fab surface display. Protein Eng Des Sel. 2018;31(3):91–101. doi:10.1093/protein/gzy004.
  • Bowers PM, Horlick RA, Kehry MR, Neben TY, Tomlinson GL, Altobell L, Zhang X, Macomber JL, Krapf IP, Wu BF, et al. Mammalian cell display for the discovery and optimization of antibody therapeutics. Methods. 2014;65(1):44–56. doi:10.1016/j.ymeth.2013.06.010.
  • Seo H, Masuda H, Asagoshi K, Uchiki T, Kawata S, Sasaki G, Yabuki T, Miyai S, Takahashi N, Hashimoto SI, et al. Streamlined human antibody generation and optimization by exploiting designed immunoglobulin loci in a B cell line. Cell Mol Immunol. 2021;18(6):1545–61. doi:10.1038/s41423-020-0440-9.
  • Zhou Y, Wang J, Zhou I, Lou H, Li CZ, Chen ZR, Zhang ZH, Liu S, Wu S, Tan W, et al. Simultaneous expression of displayed and secreted antibodies for antibody screen. PLoS One. 2013;8(11):2–7. doi:10.1371/journal.pone.0080005.
  • Dyson MR, Masters E, Pazeraitis D, Perera RL, Syrjanen JL, Surade S, Thorsteinson N, Parthiban K, Jones PC, Sattar M, et al. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs. 2020;12(1). doi:10.1080/19420862.2020.1829335.
  • Shembekar N, Hu H, Eustace D, M CA. Single-cell droplet microfluidic screening for antibodies Specifically binding to target cells. Cell Rep. 2018;22(8):2206–15. doi:10.1016/j.celrep.2018.01.071.
  • Fitzgerald V, Leonard P. Single cell screening approaches for antibody discovery. Methods. 2017;116:34–42. doi:10.1016/j.ymeth.2016.11.006.
  • Seah YFS, Hu H, Merten CA. Microfluidic single-cell technology in immunology and antibody screening. Mol Aspects Med. 2018;59:47–61. doi:10.1016/j.mam.2017.09.004.
  • Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc. 2013;8(5):870–91. doi:10.1038/nprot.2013.046.
  • Winters A, McFadden K, Bergen J, Landas J, Berry KA, Gonzalez A, Salimi-Moosavi H, Murawsky CM, Tagari P, King CT. Rapid single B cell antibody discovery using nanopens and structured light. MAbs. 2019;11(6):1025–35. doi:10.1080/19420862.2019.1624126.
  • Fitzgerald V, Manning B, O’Donnell B, O’Reilly B, O’Sullivan D, O’Kennedy R, Leonard P. Exploiting highly ordered subnanoliter volume microcapillaries as microtools for the analysis of antibody producing cells. Anal Chem. 2015;87(2):997–1003. doi:10.1021/ac503547j.
  • Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, et al. LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection. bioRxiv Prepr Serv Bio. 2020. doi:10.1101/2020.09.30.318972.
  • Lim S, Chen B, Kariolis MS, Dimov IK, Baer TM, Cochran JR. Engineering high affinity Protein–Protein Interactions using a high-throughput microcapillary array platform. ACS Chem Biol. 2017;12(2):336–41. doi:10.1021/acschembio.6b00794.
  • Zhai J, Yi S, Jia Y, Mak PI, Martins RP. Cell-based drug screening on microfluidics. TrAC - Trends Anal Chem. 2019;117:231–41. doi:10.1016/j.trac.2019.05.018.
  • Yanakieva D, Elter A, Bratsch J, Friedrich K, Becker S, Kolmar H. FACS-Based functional Protein screening via microfluidic co-encapsulation of yeast secretor and mammalian reporter cells. Sci Rep. 2020;10(1):1–13. doi:10.1038/s41598-020-66927-5.
  • Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. Lab Chip. 2018;18(24):3733–49. doi:10.1039/C8LC00818C.
  • Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med. 2021;13(593):eabf1906. doi:10.1126/scitranslmed.abf1906.
  • Journal AI, Gaa R, Kumari K, Mayer HM, Yanakieva D, Tsai S, Joshi S, Guenther R, Doerner A, Gaa R, et al. An integrated mammalian library approach for optimization and enhanced microfluidics-assisted antibody hit discovery. Artif Cells, Nanomedicine, Biotechnol. 2023;51(1):74–82. doi:10.1080/21691401.2023.2173219.
  • Gaa R, Menang-Ndi E, Pratapa S, Nguyen C, Kumar S, Doerner A. Versatile and rapid microfluidics-assisted antibody discovery. MAbs. 2021;13(1):1978130. doi:10.1080/19420862.2021.1978130.
  • Makowski EK, Kinnunen PC, Huang J, Wu L, Smith MD, Wang T, Desai AA, Streu CN, Zhang Y, Zupancic JM, et al. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Nat Commun. 2022;13(1):3788. doi:10.1038/s41467-022-31457-3.
  • Kim S, Park I, Park SG, Cho S, Kim JH, Sipper N, Choi SS, Lee ES, Hong HJ. Generation, diversity determination, and application to antibody selection of a human naïve fab library. Mol Cells. 2017;40(9):655–66. doi:10.14348/molcells.2017.0106.
  • Erasmus MF, D’Angelo S, Ferrara F, Naranjo L, Teixeira AA, Buonpane R, Stewart SM, Nastri HG, Bradbury ARM. A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol. 2021;4(1):350. doi:10.1038/s42003-021-01881-0.
  • Wang Y, Jin R, Shen B, Li N, Zhou H, Wang W, Zhao Y, Huang M, Fang P, Wang S, et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. Sci Adv. 2021;7(24):1–14. doi:10.1126/sciadv.abe3839.
  • Shepherd A, Bennychen B, Marcil A, Bloemberg D, Pon R, Weeratna R, McComb S. A simplified function-first method for the discovery and optimization of bispecific immune engaging antibodies. bioRxiv. 2022;18(6):e0273884. https://www.biorxiv.org/content/early/2022/08/18/2022.08.17.504342.
  • Puligedda RD, Sharma R, Al-Saleem FH, Velu AB, Kattala CD, Prendergast GC, Lynch DR, Chumakov K, Dessain SK, Velu AB, et al. Capture and display of antibodies secreted by hybridoma cells enables fluorescent on-cell screening. MAbs. 2019;11(3):546–58. doi:10.1080/19420862.2019.1574520.
  • Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, Meng SM, Ehling RA, Bonati L, Dahinden J, Gainza P, et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat Biomed Eng. 2021;5(6):600–12. doi:10.1038/s41551-021-00699-9.
  • Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Vaseghi HR, Qian L, Liu J. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep. 2017;7(1):2193. doi:10.1038/s41598-017-02460-2.