1,328
Views
0
CrossRef citations to date
0
Altmetric
Report

Multivalent design of the monoclonal SynO2 antibody improves binding strength to soluble α-Synuclein aggregates

, , , , , , , & ORCID Icon show all
Article: 2256668 | Received 20 Mar 2023, Accepted 05 Sep 2023, Published online: 22 Sep 2023

References

  • Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways. Am J Pathol. 2016;186:478–12. doi:10.1016/j.ajpath.2015.09.023.
  • Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51(6):745–52. doi:10.1136/jnnp.51.6.745.
  • Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477:107–10. doi:10.1038/nature10324.
  • Burré J, Sharma M, Südhof TC. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci. 2014;111(40):E4274–E83. doi:10.1073/pnas.1416598111.
  • Killinger BA, Melki R, Brundin P, Kordower JH. Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let’s talk about the lipids in the room. Npj Park Dis. 2019;5(1):23. doi:10.1038/s41531-019-0095-3.
  • Luth ES, Bartels T, Dettmer U, Kim NC, Selkoe DJ. Purification of α-Synuclein from human brain reveals an instability of endogenous multimers as the protein approaches purity. Biochemistry. 2015;54(2):279–92. doi:10.1021/bi501188a.
  • Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, et al. Direct observation of the interconversion of normal and toxic forms of α-Synuclein. Cell. 2012;149(5):1048–59. doi:10.1016/j.cell.2012.03.037.
  • de Oliveira GAP, Silva JL. Alpha-Synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson’s disease. Commun Biol. 2019;2(1):374. doi:10.1038/s42003-019-0598-9.
  • Mirecka EA, Shaykhalishahi H, Gauhar A, Akgül Ş, Lecher J, Willbold D, Stoldt M, Hoyer W. Sequestration of a β-hairpin for control of α-Synuclein aggregation. Angew Chem Int Ed. 2014;53(16):4227–30. doi:10.1002/anie.201309001.
  • Salveson PJ, Spencer RK, Nowick JS. X-Ray crystallographic structure of oligomers formed by a toxic β-hairpin derived from α-Synuclein: trimers and Higher-Order oligomers. J Am Chem Soc. 2016;138:4458–67. doi:10.1021/jacs.5b13261.
  • Yu H, Han W, Ma W, Schulten K. Transient β-hairpin formation in α-Synuclein monomer revealed by coarse-grained molecular dynamics simulation. J Chem Phys. 2015;143:243142. doi:10.1063/1.4936910.
  • Celej MS, Sarroukh R, Goormaghtigh E, Fidelio GD, Ruysschaert J-M, Raussens V. Toxic prefibrillar α-Synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure. Biochem J. 2012;443:719–26. doi:10.1042/BJ20111924.
  • Kim H-Y, Cho M-K, Kumar A, Maier E, Siebenhaar C, Becker S, Fernandez CO, Lashuel HA, Benz R, Lange A, et al. Structural properties of pore-forming oligomers of α-Synuclein. J Am Chem Soc. 2009;131(47):17482–89. doi:10.1021/ja9077599.
  • Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM, Chiti F, Cremades N, Cecchi C. The release of toxic oligomers from α-Synuclein fibrils induces dysfunction in neuronal cells. Nat Commun. 2021;12(1):1814. doi:10.1038/s41467-021-21937-3.
  • Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, Cecchi C, Vendruscolo M, Chiti F, Cremades N, et al. Structural basis of membrane disruption and cellular toxicity by α-Synuclein Oligomers. Sci. 2017;358(6369):1440–43. doi:10.1126/science.aan6160.
  • Choi B-K, Choi M-G, Kim J-Y, Yang Y, Lai Y, Kweon D-H, Lee NK, Shin Y-K. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc Natl Acad Sci. 2013;110(10):4087–92. doi:10.1073/pnas.1218424110.
  • Deas E, Cremades N, Angelova PR, Ludtmann MHR, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, et al. Alpha-Synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal. 2016;24(7):376–91. doi:10.1089/ars.2015.6343.
  • Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharikov A, Borah A, Hu X, McCoy J, Chu CT, Burton EA, et al. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med. 2016;8. doi:10.1126/scitranslmed.aaf3634.
  • Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, Baev AY, Berezhnov AV, Yao Z, Little D, Banushi B, et al. α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun. 2018;9:2293. doi:10.1038/s41467-018-04422-2.
  • Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-Synuclein, a protein linked to neurodegenerative disorders. Sci Signal. 2015;8. doi:10.1126/scisignal.2005965.
  • Lee H-J, Suk J-E, Patrick C, Bae E-J, Cho J-H, Rho S, Hwang D, Masliah E, Lee S-J. Direct Transfer of α-Synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–72. doi:10.1074/jbc.M109.081125.
  • Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K. Cell-produced α-Synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30(20):6838–51. doi:10.1523/JNEUROSCI.5699-09.2010.
  • Lee H-J, Kim C, Lee S-J. Alpha-Synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev. 2010;3:283–87. doi:10.4161/oxim.3.4.12809.
  • Lee H-J, Suk J-E, Bae E-J, Lee S-J. Clearance and deposition of extracellular α-Synuclein aggregates in microglia. Biochem Biophys Res Commun. 2008;372(3):423–28. doi:10.1016/j.bbrc.2008.05.045.
  • Brahic M, Bousset L, Bieri G, Melki R, Gitler AD. Axonal transport and secretion of fibrillar forms of α-Synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol (Berl). 2016;131(4):539–48. doi:10.1007/s00401-016-1538-0.
  • Rey NL, Petit GH, Bousset L, Melki R, Brundin P. Transfer of human α-Synuclein from the olfactory bulb to Interconnected brain regions in mice. Acta Neuropathol (Berl). 2013;126(4):555–73. doi:10.1007/s00401-013-1160-3.
  • Fjord-Larsen L, Thougaard A, Wegener KM, Christiansen J, Larsen F, Schrøder-Hansen LM, Kaarde M, Ditlevsen DK. Nonclinical safety evaluation, pharmacokinetics, and target engagement of Lu AF82422, a monoclonal IgG1 antibody against alpha-Synuclein in development for treatment of synucleinopathies. MAbs. 2021;13(1):1994690. doi:10.1080/19420862.2021.1994690.
  • Kalluri H, Zadikoff C, Rueter L, Graff O, Xiong H. Randomized, placebo-controlled single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and immunogenicity of ABBV-0805, an anti-alpha-Synuclein monoclonal antibody in healthy subjects [abstract]. Mov Disord. 2021;36. doi:10.1002/mds.28794.
  • Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, Fernandez HH, Rascol O, Giladi N, Stocchi F, Tanner CM, et al. Trial of cinpanemab in early Parkinson’s disease. N Engl J Med. 2022;387(5):408–20. doi:10.1056/NEJMoa2203395.
  • Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, Postuma RB, Pavese N, Stocchi F, Azulay J-P, et al. Trial of prasinezumab in early-stage Parkinson’s disease. N Engl J Med. 2022;387(5):421–32. doi:10.1056/NEJMoa2202867.
  • Schofield DJ, Irving L, Calo L, Bogstedt A, Rees G, Nuccitelli A, Narwal R, Petrone M, Roberts J, Brown L, et al. Preclinical development of a high affinity α-Synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-Synuclein and attenuate α-Synuclein spreading in vivo. Neurobiol Dis. 2019;132:104582. doi:10.1016/j.nbd.2019.104582.
  • Roshanbin S, Julku U, Xiong M, Eriksson J, Masliah E, Hultqvist G, Bergström J, Ingelsson M, Syvänen S, Sehlin D. Reduction of ΑSYN pathology in a mouse model of PD using a brain-penetrating bispecific antibody. Pharmaceutics. 2022;14(7):1412. doi:10.3390/pharmaceutics14071412.
  • Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, et al. Alpha-Synuclein Research: defining strategic moves in the battle against Parkinson’s disease. Npj Park Dis. 2021;7(1):65. doi:10.1038/s41531-021-00203-9.
  • Rofo F, Meier SR, Metzendorf NG, Morrison JI, Petrovic A, Syvänen S, Sehlin D, Hultqvist G. A brain-targeting bispecific-multivalent antibody clears soluble amyloid-beta aggregates in Alzheimer’s disease mice. Neurotherapeutics. 2022;19(5):1588–602. doi:10.1007/s13311-022-01283-y.
  • Rofo F, Buijs J, Falk R, Honek K, Lannfelt L, Lilja AM, Metzendorf NG, Gustavsson T, Sehlin D, Söderberg L, et al. Novel multivalent design of a monoclonal antibody improves binding strength to soluble aggregates of amyloid beta. Transl Neurodegener. 2021;10(1):38. doi:10.1186/s40035-021-00258-x.
  • van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. doi:10.1056/NEJMoa2212948.
  • Vaikath NN, Majbour NK, Paleologou KE, Ardah MT, van Dam E, van de Berg WDJ, Forrest SL, Parkkinen L, Gai W-P, Hattori N, et al. Generation and Characterization of novel conformation-specific monoclonal antibodies for α-Synuclein pathology. Neurobiol Dis. 2015;79:81–99. doi:10.1016/j.nbd.2015.04.009.
  • Castonguay A-M, Gravel C, Lévesque M. Treating Parkinson’s disease with antibodies: previous studies and future directions. J Park Dis. 2021;11(1):71–92. doi:10.3233/JPD-202221.
  • Morrison JI, Metzendorf NG, Rofo F, Petrovic A, Hultqvist G A single chain fragment constant (scFc) design enables easy production of a monovalent BBB transporter and provides an improved brain Uptake at elevated doses. J Neurochem. 2023; 15768, doi:10.1111/jnc.15768.
  • Bondza S, ten Broeke T, Nestor M, Leusen JHW, Buijs J. Bivalent binding on cells varies between anti-CD20 antibodies and is dose-dependent. MAbs. 2020;12(1):1792673. doi:10.1080/19420862.2020.1792673.
  • Kumar ST, Jagannath S, Francois C, Vanderstichele H, Stoops E, Lashuel HA. How specific are the conformation-specific α-Synuclein antibodies? Characterization and validation of 16 α-Synuclein conformation-specific antibodies using well-characterized preparations of α-Synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol Dis. 2020;146:105086. doi:10.1016/j.nbd.2020.105086.
  • Yusakul G, Sakamoto S, Pongkitwitoon B, Tanaka H, Morimoto S. Effect of Linker length between variable domains of single chain variable fragment antibody against Daidzin on its reactivity. Biosci Biotechnol Biochem. 2016;80:1306–12. doi:10.1080/09168451.2016.1156482.
  • Fang XT, Sehlin D, Lannfelt L, Syvänen S, Hultqvist G. Efficient and inexpensive transient expression of multispecific multivalent antibodies in Expi293 cells. Biol Proced Online. 2017;19(1):11. doi:10.1186/s12575-017-0060-7.
  • Almandoz-Gil L, Welander H, Ihse E, Khoonsari PE, Musunuri S, Lendel C, Sigvardson J, Karlsson M, Ingelsson M, Kultima K, et al. Low molar excess of 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote oligomerization of alpha-Synuclein through different pathways. Free Radic Biol Med. 2017;110:421–31. doi:10.1016/j.freeradbiomed.2017.07.004.
  • Hunter WM, Greenwood FC. Preparation of Iodine-131 labelled human growth hormone of high specific activity. Nature. 1962;194(4827):495–96. doi:10.1038/194495a0.