4,954
Views
4
CrossRef citations to date
0
Altmetric
Report

Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies

ORCID Icon, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Article: 2256745 | Received 29 May 2023, Accepted 05 Sep 2023, Published online: 12 Sep 2023

References

  • Buntz B. 50 of 2021’s best-selling pharmaceuticals, drug Discovery & development. Cleveland, OH: WTWH Media; 2022 Mar 29 [accessed 2022 Jul 1].
  • Hong P, Koza S, Bouvier ES. Size-exclusion chromatography for the analysis of protein Biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol. 2012;35(20):2923–21. doi:10.1080/10826076.2012.743724. PMID: 23378719.
  • Haverick M, Mengisen S, Shameem M, Ambrogelly A. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications. MAbs. 2014;6(4):852–58. doi:10.4161/mabs.28693. PMID: 24751784.
  • Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752:233–45. doi:10.1016/s0378-4347(00)00548-x. PMID: 11270864.
  • Suntornsuk L. Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal Bioanal Chem. 2010;398(1):29–52. doi:10.1007/s00216-010-3741-5. PMID: 20437226.
  • Temel DB, Landsman P, Brader ML. Orthogonal methods for characterizing the unfolding of therapeutic monoclonal antibodies: differential scanning calorimetry, isothermal chemical denaturation, and intrinsic fluorescence with concomitant static light scattering. Methods Enzymol. 2016;567:359–89. doi:10.1016/bs.mie.2015.08.029. PMID: 26794361.
  • Garidel P, Hegyi M, Bassarab S, Weichel M. A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J. 2008;3:1201–11. doi:10.1002/biot.200800091. PMID: 18702089.
  • Luypaert J, Massart DL, Vander Heyden Y. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta. 2007;72(3):865–83. doi:10.1016/j.talanta.2006.12.023. PMID: 19071701.
  • Poppe L, Jordan JB, Lawson K, Jerums M, Apostol I, Schnier PD. Profiling formulated monoclonal antibodies b1H NMR spectroscopy. Anal Chem. 2013;85(20):9623–29. doi:10.1021/ac401867f. PMID: 24006877.
  • Tetin SY, Prendergast FG, Venyaminov SY. Accuracy of protein secondary structure determination from circular dichroism spectra based on immunoglobulin examples. Anal Biochem. 2003;321:183–87. doi:10.1016/s0003-2697(03)00458-5. PMID: 14511682.
  • Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem. 2016;501:4–22. doi:10.1016/j.ab.2016.02.007. PMID: 26896682.
  • Tomar DS, Kumar S, Singh SK, Goswami S, Li L. Molecular basis of high viscosity in concentrated antibody solutions: strategies for high concentration drug product development. MAbs. 2016;8(2):216–28. doi:10.1080/19420862.2015.1128606. PMID: 26736022.
  • Campuzano IDG, Sandoval W. Denaturing and native mass spectrometric analytics for biotherapeutic drug discovery research: historical, current, and future personal perspectives. J Am Soc Mass Spectrom. 2021;32:1861–85. doi:10.1021/jasms.1c00036. PMID: 33886297.
  • Song YE, Dubois H, Hoffmann M, DE S, Fromentin Y, Wiesner J, Pfenninger A, Clavier S, Pieper A, Duhau L, et al. Automated mass spectrometry multi-attribute method analyses for process development and characterization of mAbs. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1166:122540. doi:10.1016/j.jchromb.2021.122540. PMID: 33545564.
  • Jain T, Sun T, Durand S, Hall A, Houston Nga R, Nett Juergen H, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. Biophysical properties of the clinical-stage antibody landscape. Proceedings of the National Academy of Sciences. 2017;114:944–49. doi:10.1073/pnas.1616408114.
  • Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, et al. Predicting antibody developability profiles through early stage Discovery screening. MAbs. 2020;12(1):1743053. doi:10.1080/19420862.2020.1743053.
  • Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci Adv. 2020;6(32):eabb0372. doi:10.1126/sciadv.abb0372. PMID: 32923611.
  • Vatsa S. In silico prediction of post-translational modifications in therapeutic antibodies. MAbs. 2022;14(1):2023938. doi:10.1080/19420862.2021.2023938.
  • Ferreira GM, Calero-Rubio C, Sathish HA, Remmele RL Jr., Roberts CJ. Electrostatically mediated protein-protein interactions for monoclonal antibodies: a combined experimental and coarse-grained molecular modeling approach. J Pharm Sci. 2019;108:120–32. doi:10.1016/j.xphs.2018.11.004. PMID: 30419274.
  • Virk SS, Underhill PT. Application of a simple short-range attraction and long-range repulsion colloidal model toward predicting the viscosity of protein solutions. Mol Pharm. 2022;19(11):4233–40. doi:10.1021/acs.molpharmaceut.2c00582. PMID: 36129361.
  • Sankar K, Krystek SR Jr., Carl SM, Day T, Maier JKX. AggScore: prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins. 2018;86(11):1147–56. doi:10.1002/prot.25594. PMID: 30168197.
  • Liu S, Verma A, Kettenberger H, Richter WF, Shah DK. Effect of variable domain charge on in vitro and in vivo disposition of monoclonal antibodies. MAbs. 2021;13(1):1993769. doi:10.1080/19420862.2021.1993769. PMID: 34711143.
  • Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B. 2010;114(19):6614–24. doi:10.1021/jp911706q. PMID: 20411962.
  • Tomar DS, Li L, Broulidakis MP, Luksha NG, Burns CT, Singh SK, Kumar S. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs. 2017;9(3):476–89. doi:10.1080/19420862.2017.1285479. PMID: 28125318.
  • Grinshpun B, Thorsteinson N, Pereira JN, Rippmann F, Nannemann D, Sood VD, Fomekong Nanfack Y. Identifying biophysical assays and in silico properties that enrich for slow clearance in clinical-stage therapeutic antibodies. MAbs. 2021;13(1):1932230. doi:10.1080/19420862.2021.1932230. PMID: 34116620.
  • Lai PK, Swan JW, Trout BL. Calculation of therapeutic antibody viscosity with coarse-grained models, hydrodynamic calculations and machine learning-based parameters. MAbs. 2021;13(1):1907882. doi:10.1080/19420862.2021.1907882. PMID: 33834944.
  • Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, Flem-Karlsen K, Frank R, Mehta BB, Vu MH, et al. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs. 2022;14(1):2008790. doi:10.1080/19420862.2021.2008790. PMID: 35293269.
  • Rai BK, Apgar JR, Bennett EM. Low-data interpretable deep learning prediction of antibody viscosity using a biophysically meaningful representation. Sci Rep. 2023;13(1):2917. doi:10.1038/s41598-023-28841-4. PMID: 36806303.
  • Lai PK, Gallegos A, Mody N, Sathish HA, Trout BL. Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics. MAbs. 2022;14(1):2026208. doi:10.1080/19420862.2022.2026208. PMID: 35075980.
  • Lai PK, Fernando A, Cloutier TK, Gokarn Y, Zhang J, Schwenger W, Chari R, Calero-Rubio C, Trout BL. Machine learning applied to determine the molecular descriptors responsible for the viscosity behavior of concentrated therapeutic antibodies. Mol Pharm. 2021;18(3):1167–75. doi:10.1021/acs.molpharmaceut.0c01073. PMID: 33450157.
  • Jacobsen FW, Stevenson R, Li C, Salimi-Moosavi H, Liu L, Wen J, Luo Q, Daris K, Buck L, Miller S, et al. Engineering an IgG scaffold lacking effector function with optimized developability. J Biol Chem. 2017;292:1865–75. doi:10.1074/jbc.M116.748525. PMID: 27994062.
  • Russell W, Burch R. The principles of humane experimental technique. London, UK: Methuen; 1959.
  • Dillon M, Yin Y, Zhou J, McCarty L, Ellerman D, Slaga D, Junttila TT, Han G, Sandoval W, Ovacik MA, et al. Efficient production of bispecific IgG of different isotypes and species of origin in single mammalian cells. MAbs. 2017;9(2):213–30. doi:10.1080/19420862.2016.1267089. PMID: 27929752.
  • Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, Plant M, Henkle B, Li Y, Deechongkit S, et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem. 2008;283:16206–15. doi:10.1074/jbc.M709988200. PMID: 18339626.
  • Molecular Operating Environment (MOE), 2020.09. [Software] 1010 Sherbooke St. West, suite #910, Montreal, QC, Canada, H3A 2R7: Chemical Computing Group ULC; 2022.
  • BIOVIA. Discovery Studio. [software] 5005 Wateridge Vis Drive. San Diego CA 92121: Dassault Systemes; 2022.
  • Schrodinger Release 2022-2: Maestro[Software]. New York, NY, 2021: Schrödinger, LLC; 2021.
  • Ruffolo JA, Sulam J, Gray JJ. Antibody structure prediction using interpretable deep learning. bioRxiv. 2021;3(2):445982. doi:10.1101/2021.05.27.445982.
  • Wen J, Lord H, Knutson N, Wikstrom M. Nano differential scanning fluorimetry for comparability studies of therapeutic proteins. Anal Biochem. 2020;593:113581. doi:10.1016/j.ab.2020.113581. PMID: 31935356.
  • Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I, et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci U S A. 2014;111:18601–06. doi:10.1073/pnas.1421779112. PMID: 25512516.
  • Jacobitz AW, Rodezno W, Agrawal NJ. Utilizing cross-product prior knowledge to rapidly de-risk chemical liabilities in therapeutic antibody candidates. AAPS Open. 2022;8(1):10. doi:10.1186/s41120-022-00057-2.
  • Zhang Z. Large-scale identification and quantification of covalent modifications in therapeutic proteins. Anal Chem. 2009;81:8354–64. doi:10.1021/ac901193n. PMID: 19764700.
  • MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–68. doi:10.1093/bioinformatics/btq054.
  • Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vásquez M, Xu Y. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs. 2019;11(1):45–57. doi:10.1080/19420862.2018.1548233. PMID: 30526254.
  • Sydow JF, Lipsmeier F, Larraillet V, Hilger M, Mautz B, Mølhøj M, Kuentzer J, Klostermann S, Schoch J, Voelger HR, et al. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PloS One. 2014;9(6):e100736. doi:10.1371/journal.pone.0100736. PMID: 24959685.
  • Honegger A, Plückthun A. Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol. 2001;309(3):657–70. doi:10.1006/jmbi.2001.4662. PMID: 11397087.
  • Liu Y, Caffry I, Wu J, Geng SB, Jain T, Sun T, Reid F, Cao Y, Estep P, Yu Y, et al. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. MAbs. 2014;6(2):483–92. doi:10.4161/mabs.27431.
  • Geoghegan JC, Fleming R, Damschroder M, Bishop SM, Sathish HA, Esfandiary R. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering. MAbs. 2016;8(5):941–50. doi:10.1080/19420862.2016.1171444.
  • Geng SB, Cheung JK, Narasimhan C, Shameem M, Tessier PM. Improving monoclonal antibody selection and engineering using measurements of colloidal protein interactions. J Pharm Sci. 2014;103(11):3356–63. doi:10.1002/jps.24130.
  • Thiagarajan G, Semple A, James JK, Cheung JK, Shameem M. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability. MAbs. 2016;8(6):1088–97. doi:10.1080/19420862.2016.1189048.
  • Li L, Kumar S, Fau - Buck PM, Buck PM, Fau - Burns C, Burns C, Fau - Lavoie J, Lavoie J, Fau - Singh SK, Singh S, et al. Concentration dependent viscosity of monoclonal antibody solutions: explaining experimental behavior in terms of molecular properties. Pharm Res. 2014;31(11):3161–78. doi:10.1007/s11095-014-1409-0.
  • Garidel P, Blume A, Wagner M. Prediction of colloidal stability of high concentration protein formulations. Pharm Dev Technol. 2015;20(3):367–74. doi:10.3109/10837450.2013.871032.
  • He F, Woods CE, Becker GW, Narhi LO, Razinkov VI. High‐throughput assessment of thermal and colloidal stability parameters for monoclonal antibody formulations. J Pharm Sci. 2011;100(12):5126–41. doi:10.1002/jps.22712.
  • He F, Becker GW, Litowski JR, Narhi LO, Brems DN, Razinkov VI. High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Anal Biochem. 2010;399(1):141–43. doi:10.1016/j.ab.2009.12.003.
  • Connolly Brian D, Petry C, Yadav S, Demeule B, Ciaccio N, Moore Jamie MR, Shire Steven J, Gokarn Yatin R. Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J. 2012;103(1):69–78. doi:10.1016/j.bpj.2012.04.047.
  • Yadav S, Shire SJ, Kalonia DS. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012;101(3):998–1011. doi:10.1002/jps.22831.
  • Hu S, Datta-Mannan A, D’Argenio DZ. Physiologically based modeling to predict monoclonal antibody pharmacokinetics in humans from in vitro physiochemical properties. MAbs. 2022;14(1):2056944. doi:10.1080/19420862.2022.2056944.
  • Avery LB, Wade J, Wang M, Tam A, King A, Piche-Nicholas N, Kavosi MS, Penn S, Cirelli D, Kurz JC, et al. Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics. MAbs. 2018;10(2):244–55. doi:10.1080/19420862.2017.1417718.
  • Grinshpun B-O, Thorsteinson N, Pereira JN, Rippmann F, Nannemann D, Sood V-O, Fomekong Nanfack Y-O. Identifying biophysical assays and in silico properties that enrich for slow clearance in clinical-stage therapeutic antibodies. MAbs. 2021;13(1):1932230. doi:10.1080/19420862.2021.1932230.
  • Bumbaca Yadav D, Sharma VK, Boswell CA, Hotzel I, Tesar D, Shang Y, Ying Y, Fischer SK, Grogan JL, Chiang EY, et al. Evaluating the use of antibody variable region (Fv) charge as a risk assessment tool for predicting typical cynomolgus monkey pharmacokinetics *. J Biol Chem. 2015;290(50):29732–41. doi:10.1074/jbc.M115.692434.
  • Schoch A, Kettenberger H, Mundigl O, Winter G, Engert J, Heinrich J, Emrich T Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proceedings of the National Academy of Sciences. 2015;112:5997–6002. doi:10.1073/pnas.1408766112.
  • Datta-Mannan A, Lu J, Witcher DR, Leung D, Tang Y, Wroblewski VJ. The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies. MAbs. 2015;7(6):1084–93. doi:10.1080/19420862.2015.1075109. PMID: 26337808.
  • Betts A, Keunecke A-O, van Steeg TJ, van der Graaf PH, Avery L-O, Jones H, Berkhout J. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: a comparison between human, cynomolgus monkey and hFcrn Tg32 transgenic mouse using a population-modeling approach. MAbs. 2018;10(5):751–64. doi:10.1080/19420862.2018.1462429.
  • Kelly RL, Sun T, Jain T, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown M, Vásquez M, Wittrup KD, et al. High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. MAbs. 2015;7(4):770–77. doi:10.1080/19420862.2015.1043503. PMID: 26047159.
  • Kraft TE, Richter WF, Emrich T, Knaupp A, Schuster M, Wolfert A, Kettenberger H. Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. MAbs. 2020;12(1):1683432. doi:10.1080/19420862.2019.1683432.
  • Hötzel I, Theil FP, Bernstein LJ, Prabhu S, Deng R, Quintana L, Lutman J, Sibia R, Chan P, Bumbaca D, et al. A strategy for risk mitigation of antibodies with fast clearance. MAbs. 2012;4(6):753–60. doi:10.4161/mabs.22189. PMID: 23778268.
  • Seo N, Polozova A, Zhang M, Yates Z, Cao S, Li H, Kuhns S, Maher G, McBride HJ, Liu J. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab. MAbs. 2018;10(4):678–91. doi:10.1080/19420862.2018.1452580. PMID: 29553864.
  • Schlothauer T, Rueger P, Stracke JO, Hertenberger H, Fingas F, Kling L, Emrich T, Drabner G, Seeber S, Auer J, et al. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. MAbs. 2013;5(4):576–86. doi:10.4161/mabs.24981.
  • Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel. 2010;23:385–92. doi:10.1093/protein/gzq009. PMID: 20159773.
  • Bumbaca Yadav D, Sharma VK, Boswell CA, Hotzel I, Tesar D, Shang Y, Ying Y, Fischer SK, Grogan JL, Chiang EY, et al. Evaluating the use of antibody variable region (Fv) charge as a risk assessment tool for predicting typical cynomolgus monkey pharmacokinetics. J Biol Chem. 2015;290(50):29732–41. doi:10.1074/jbc.M115.692434. PMID: 26491012.
  • Datta-Mannan A, Thangaraju A, Leung D, Tang Y, Witcher DR, Lu J, Wroblewski VJ. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. MAbs. 2015;7(3):483–93. doi:10.1080/19420862.2015.1016696. PMID: 25695748.
  • Sun Y, Cai H, Hu Z, Boswell CA, Diao J, Li C, Zhang L, Shen A, Teske CA, Zhang B, et al. Balancing the affinity and pharmacokinetics of antibodies by modulating the size of charge patches on complementarity-determining regions. J Pharm Sci. 2020;109:3690–96. doi:10.1016/j.xphs.2020.09.003. PMID: 32910947.
  • Ollier R, Fuchs A, Gauye F, Piorkowska K, Menant S, Ratnam M, Montanari P, Guilhot F, Phillipe D, Audrain M, et al. Improved antibody pharmacokinetics by disruption of contiguous positive surface potential and charge reduction using alternate human framework. MAbs. 2023;15(1):2232087. doi:10.1080/19420862.2023.2232087. PMID: 37408314.
  • Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63. doi:10.1021/bc100261d. PMID: 21053952.
  • Campuzano IDG, Robinson JH, Hui JO, Shi SD, Netirojjanakul C, Nshanian M, Egea PF, Lippens JL, Bagal D, Loo JA, et al. Native and denaturing MS protein Deconvolution for biopharma: monoclonal antibodies and antibody–drug conjugates to Polydisperse membrane proteins and beyond. Anal Chem. 2019;91(15):9472–80. doi:10.1021/acs.analchem.9b00062. PMID: 31194911.
  • Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Cryst A. 1976;32(5):922–23. doi:10.1107/S0567739476001873.
  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5(1):113. doi:10.1186/1471-2105-5-113. PMID: 15318951.
  • Qi W, Alekseychyk L, Nuanmanee N, Temel DB, Jann V, Treuheit M, Razinkov VP. Resolving liquid-liquid phase separation for a peptide fused monoclonal antibody by formulation optimization. J Pharm Sci. 2021;110(2):738–45. doi:10.1016/j.xphs.2020.09.020.
  • Shih JY, Patel V, Watson A, Hager T, Luan P, Salimi-Moosavi H, Ma M. Implementation of a universal analytical method in early-stage development of human antibody therapeutics: application to pharmacokinetic assessment for candidate selection. Bioanalysis. 2012;4(19):2357–65. doi:10.4155/bio.12.201. PMID: 23088462.
  • Team R. RStudio: integrated development for R. RStudio, PBC; 2020. http://www.rstudio.com/
  • Nguyen MK, Kao L, Kurtz I. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula. Am J Physiol-Renal. 2009;296(6):F1521–F29. doi:10.1152/ajprenal.90651.2008. PMID: 19339630.