6,870
Views
4
CrossRef citations to date
0
Altmetric
Report

A library approach for the de novo high-throughput isolation of humanized VHH domains with favorable developability properties following camelid immunization

, , , , , , , , & ORCID Icon show all
Article: 2261149 | Received 27 May 2023, Accepted 15 Sep 2023, Published online: 27 Sep 2023

References

  • Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023;15(1):2153410. [accessed 2023 Mar 10]. doi:10.1080/19420862.2022.2153410.
  • Mullard A. 2022 FDA approvals. Nat Rev Drug Discovery [Internet]. 2023 [accessed 2023 Jan 10]. https://www.nature.com/articles/d41573-023-00001-3.
  • Walsh G, Walsh E. Biopharmaceutical benchmarks 2022. Nat Biotechnol. 2022;40(12):1722–19. doi:10.1038/s41587-022-01582-x.
  • Conrath KE, Wernery U, Muyldermans S, Nguyen VK. Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev Comp Immunol. 2003;27(2):87–103. doi:10.1016/S0145-305X(02)00071-X.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, Bendahman N, Hammers R. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–48. doi:10.1038/363446a0.
  • Sellmann C, Pekar L, Bauer C, Ciesielski E, Krah S, Becker S, Toleikis L, Kügler J, Frenzel A, Valldorf B, et al., A one-step process for the construction of phage display scFv and VHH libraries. Mol Biotechnol. 2020;62(4):228–39. [accessed 2020 Jan 28]. doi:10.1007/s12033-020-00236-0.
  • Roth L, Krah S, Klemm J, Günther R, Toleikis L, Busch M, Becker S, Zielonka S. Isolation of antigen-specific VHH single-domain antibodies by combining animal immunization with yeast surface display. Methods Mol Biol. 2020;2070:173–89.
  • Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, Muyldermans S, Hol WGJ, Kobilka BK, Steyaert J. A general protocol for the generation of nanobodies for structural biology. Nat Protoc. 2014;9(3):674–93. doi:10.1038/nprot.2014.039.
  • Klausz K, Pekar L, Boje AS, Gehlert CL, Krohn S, Gupta T, Xiao Y, Krah S, Zaynagetdinov R, Lipinski B, et al. Multifunctional NK cell–engaging antibodies targeting EGFR and NKp30 elicit efficient tumor cell killing and proinflammatory cytokine release. J Immunol. 2022;209(9):1724–35. doi:10.4049/jimmunol.2100970.
  • Li Z, Krippendorff B-F, Sharma S, Walz AC, Lavé T, Shah DK. Influence of molecular size on tissue distribution of antibody fragments. MAbs. 2016;8(1):113–19. doi:10.1080/19420862.2015.1111497.
  • Könning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, Schröter C, Sellmann C, Hock B, Kolmar H. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol. 2017;45:10–16. doi:10.1016/j.sbi.2016.10.019.
  • Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol. 2016;38(1):21–28. doi:10.3109/08923973.2015.1102934.
  • Pekar L, Busch M, Valldorf B, Hinz SC, Toleikis L, Krah S, Zielonka S. Biophysical and biochemical characterization of a VHH-based IgG-like bi- and trispecific antibody platform. MAbs. 2020;12(1):1812210. doi:10.1080/19420862.2020.1812210.
  • Yanakieva D, Pekar L, Evers A, Fleischer M, Keller S, Mueller-Pompalla D, Toleikis L, Kolmar H, Zielonka S, Krah S. Beyond bispecificity: controlled Fab arm exchange for the generation of antibodies with multiple specificities. MAbs. 2022;14(1):2018960. [accessed 2022 Jul 1]. doi:10.1080/19420862.2021.2018960.
  • Chanier T, Chames P. Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies. 2019;8(1):13. doi:10.3390/antib8010013.
  • Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol [Internet]. 2017;8:1603. [accessed 2019 Sep 24]. http://journal.frontiersin.org/article/10.3389/fimmu.2017.01603/full.10.3389/fimmu.2017.01603.
  • Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs [Internet]. 2019 [accessed 2019 Dec 3]. http://link.springer.com/10.1007/s40259-019-00392-z.
  • Duggan S. Caplacizumab: first global approval. Drugs. 2018;78(15):1639–42. doi:10.1007/s40265-018-0989-0.
  • Markham A. Envafolimab: first approval. Drugs. 2022;82(2):235–40. doi:10.1007/s40265-022-01671-w.
  • Keam SJ. Ozoralizumab: first approval. Drugs. 2023;83(1):87–92. doi:10.1007/s40265-022-01821-0.
  • Lyu X, Zhao Q, Hui J, Wang T, Lin M, Wang K, Zhang J, Shentu J, Dalby PA, Zhang H, et al. The global landscape of approved antibody therapies. Antib Ther. 2022;5(4):233–57. doi:10.1093/abt/tbac021.
  • Murakami T, Kumachi S, Matsunaga Y, Sato M, Wakabayashi-Nakao K, Masaki H, Yonehara R, Motohashi M, Nemoto N, Tsuchiya M. Construction of a humanized artificial VHH library reproducing structural features of camelid VHHs for therapeutics. Antibodies. 2022;11(1):10. doi:10.3390/antib11010010.
  • Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain J-C, Favre G, Olichon A, et al. NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife [Internet]. 2016;5:e16228. [accessed 2023 Jan 12]. https://elifesciences.org/articles/16228.
  • Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J. 2022;289(14):4304–27. doi:10.1111/febs.15809.
  • Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 2009;284(5):3273–84. doi:10.1074/jbc.M806889200.
  • Sulea T. Humanization of camelid single-domain antibodies [Internet]. In: Hussack G Henry K, editors. Single-domain antibodies. New York, NY: Springer US; 2022. pp. 299–312. [accessed 2023 Mar 10]. doi:10.1007/978-1-0716-2075-5_14.
  • Rabia LA, Desai AA, Jhajj HS, Tessier PM. Understanding and overcoming trade-offs between antibody affinity, specificity, stability and solubility. Biochem Eng J. 2018;137:365–74. doi:10.1016/j.bej.2018.06.003.
  • Teixeira AAR, Erasmus MF, D’Angelo S, Naranjo L, Ferrara F, Leal-Lopes C, Durrant O, Galmiche C, Morelli A, Scott-Tucker A, et al. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. MAbs. 2021;13(1):1980942. [accessed 2023 May 1]. doi:10.1080/19420862.2021.1980942.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 2017;114(5):944–49. doi:10.1073/pnas.1616408114.
  • Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem. 2022;403(5–6):455–77. doi:10.1515/hsz-2020-0377.
  • Doerner A, Rhiel L, Zielonka S, Kolmar H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett. 2014;588(2):278–87. doi:10.1016/j.febslet.2013.11.025.
  • Evers A, Malhotra S, Bolick W-G, Najafian A, Borisovska M, Warszawski S, Fomekong Nanfack Y, Kuhn D, Rippmann F, Crespo A, et al. SUMO: in Silico sequence assessment using multiple optimization Parameters [Internet]. In: Zielonka S Krah S, editors. Genotype phenotype coupling: methods and protocols. New York, NY: Springer US; 2023. pp. 383–98. [accessed 2023 Jul 6]. doi:10.1007/978-1-0716-3279-6_22.
  • Lin J, Lee SL, Russell AM, Huang RF, Batt MA, Chang SS, Ferrante A, Verdino P, Henry KA. A structure-based engineering approach to abrogate pre-existing antibody binding to biotherapeutics. PloS One. 2021;16(7):e0254944. doi:10.1371/journal.pone.0254944.
  • Johansson MU, Weinert C, Reichardt DA, Mahler D, Diem D, Hess C, Feusi D, Carnal S, Tietz J, Giezendanner N, et al. Design of antibody variable fragments with reduced reactivity to preexisting anti-drug antibodies. MAbs. 2023;15(1):2215887. doi:10.1080/19420862.2023.2215887.
  • Soler MA, Medagli B, Wang J, Oloketuyi S, Bajc G, Huang H, Fortuna S, de Marco A. Effect of humanizing mutations on the stability of the llama single-domain variable region. Biomolecules. 2021;11(2):163. doi:10.3390/biom11020163.
  • Nguyen VK, Desmyter A, Muyldermans S. Functional heavy-chain antibodies in camelidae [Internet]. In: Advances in immunology. Elsevier; 2001. pp. 261–96. [accessed 2023 Jan 19]. https://linkinghub.elsevier.com/retrieve/pii/S0065277601790062.
  • Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol. 2010;184(10):5696–704. doi:10.4049/jimmunol.0903722.
  • Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vásquez M, Xu Y. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs. 2019;11(1):45–57. doi:10.1080/19420862.2018.1548233.
  • Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. Front Immunol [Internet]. 2019;10. [accessed 2020 May 25]. https://www.frontiersin.org/article/10.3389/fimmu.2019.00909/full.
  • Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: next generation of immuno‐oncology treatments. Eur J Immunol. 2021;51(8):1934–42. doi:10.1002/eji.202048953.
  • Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G, Trichard S, Cesari C, Sapet M, Bosco F, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019;177(7):1701–13.e16. doi:10.1016/j.cell.2019.04.041.
  • Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol [Internet]. 2022;209(1):22–32. [accessed 2022 Jul 18]. doi:10.1093/cei/uxac028/6553894.
  • Lipinski B, Arras P, Pekar L, Klewinghaus D, Boje AS, Krah S, Zimmermann J, Klausz K, Peipp M, Siegmund V, et al. NKp46-specific single domain antibodies enable facile engineering of various potent NK cell engager formats. Protein Sci [Internet]. 2023;32(3): [accessed 2023 Mar 8]. doi:10.1002/pro.4593.
  • Benatuil L, Perez JM, Belk J, Hsieh C-M. An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel. 2010;23(4):155–59. doi:10.1093/protein/gzq002.
  • Roth L, Krah S, Klemm J, Günther R, Toleikis L, Busch M, Becker S, Zielonka S. Isolation of antigen-specific VHH single-domain antibodies by Combining animal immunization with yeast surface display [Internet]. In: Zielonka S Krah S, editors. Genotype phenotype coupling. New York, NY: Springer US; 2020. pp. 173–89. [accessed 2020 Jul 6]. doi:10.1007/978-1-4939-9853-1_10.
  • Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo K-M, Huston JS. Seedbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies†. Protein Eng Des Sel. 2010;23(4):195–202. doi:10.1093/protein/gzp094.
  • Tustian AD, Endicott C, Adams B, Mattila J, Bak H. Development of purification processes for fully human bispecific antibodies based upon modification of protein a binding avidity. MAbs. 2016;8(4):828–38. doi:10.1080/19420862.2016.1160192.
  • Sule SV, Sukumar M, Weiss WF, Marcelino-Cruz AM, Sample T, Tessier PM. High-throughput analysis of concentration-dependent antibody self-association. Biophys J. 2011;101(7):1749–57. doi:10.1016/j.bpj.2011.08.036.
  • Liu Y, Caffry I, Wu J, Geng SB, Jain T, Sun T, Reid F, Cao Y, Estep P, Yu Y, et al. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. MAbs. 2014;6(2):483–92. doi:10.4161/mabs.27431.
  • Makowski EK, Wu L, Gupta P, Tessier PM. Discovery-stage identification of drug-like antibodies using emerging experimental and computational methods. MAbs. 2021;13(1):1895540. [accessed 2023 Apr 15]. doi:10.1080/19420862.2021.1895540.
  • Klewinghaus D, Pekar L, Arras P, Krah S, Valldorf B, Kolmar H, Zielonka S. Grabbing the bull by both horns: bovine ultralong CDR-H3 paratopes enable engineering of ‘almost natural’ common light chain bispecific antibodies suitable for effector cell redirection. Front Immunol [Internet]. 2022;12:801368. [accessed 2022 Jul 1]. https://www.frontiersin.org/articles/10.3389/fimmu.2021.801368/full.
  • Pekar L, Klausz K, Busch M, Valldorf B, Kolmar H, Wesch D, Oberg H-H, Krohn S, Boje AS, Gehlert CL, et al. Affinity maturation of B7-H6 translates into enhanced NK cell–mediated tumor cell lysis and improved proinflammatory cytokine release of bispecific immunoligands via NKp30 engagement. J Immunol. 2021;206(1):225–36. doi:10.4049/jimmunol.2001004.
  • Bortoletto N, Scotet E, Myamoto Y, D’Oro U, Lanzavecchia A. Optimizing anti-CD3 affinity for effective T cell targeting against tumor cells. Eur J Immunol. 2002;32(11):3102–07. doi:10.1002/1521-4141(200211)32:11<3102:AID-IMMU3102>3.0.CO;2-C.
  • Mitchell LS, Colwell LJ, Bonvin AMJJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel. 2018;31(7–8):267–75. doi:10.1093/protein/gzy017.
  • Lipinski B, Unmuth L, Arras P, Becker S, Bauer C, Toleikis L, Krah S, Doerner A, Yanakieva D, Boje AS, et al. Generation and engineering of potent single domain antibody-based bispecific IL-18 mimetics resistant to IL-18BP decoy receptor inhibition. MAbs. 2023;15(1):2236265. doi:10.1080/19420862.2023.2236265.
  • Martin KP, Grimaldi C, Grempler R, Hansel S, Kumar S. Trends in industrialization of biotherapeutics: a survey of product characteristics of 89 antibody-based biotherapeutics. MAbs. 2023;15(1): 2191301. [accessed 2023 Apr 19]. doi:10.1080/19420862.2023.2191301.
  • Uchański T, Zögg T, Yin J, Yuan D, Wohlkönig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E, Steyaert J. An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep. 2019;9(1). [accessed 2020 Jan 28]. doi:10.1038/s41598-018-37212-3.
  • Pekar L, Klewinghaus D, Arras P, Carrara SC, Harwardt J, Krah S, Yanakieva D, Toleikis L, Smider VV, Kolmar H, et al. Milking the cow: cattle-derived chimeric ultralong CDR-H3 antibodies and their engineered CDR-H3-Only knobbody counterparts targeting epidermal growth factor receptor elicit potent NK cell-mediated cytotoxicity. Front Immunol. 2021;12:4378. doi:10.3389/fimmu.2021.742418.
  • Hu D, Hu S, Wan W, Xu M, Du R, Zhao W, Gao X, Liu J, Liu H, Hong J, et al. Effective optimization of antibody affinity by phage display Integrated with high-throughput DNA synthesis and sequencing technologies. PloS One. 2015;10(6):e0129125. doi:10.1371/journal.pone.0129125.
  • Larman HB, Jing Xu G, Pavlova NN, Elledge SJ Construction of a rationally designed antibody platform for sequencing-assisted selection. Proceedings of the National Academy of Sciences 2012;109:18523–28. https://www.pnas.org/.
  • Mathonet P, Ullman CG. The application of next generation sequencing to the understanding of antibody repertoires. Front Immunol [Internet]. 2013;4:265. [accessed 2023 May 1]. http://journal.frontiersin.org/article/10.3389/fimmu.2013.00265/abstract.
  • Barreto K, Maruthachalam BV, Hill W, Hogan D, Sutherland AR, Kusalik A, Fonge H, DeCoteau JF, Geyer CR. Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs. Nucleic Acids Res. 2019;47(9):e50–e50. doi:10.1093/nar/gkz131.
  • Hu R, Fu L, Chen Y, Chen J, Qiao Y, Si T. Protein engineering via Bayesian optimization-guided evolutionary algorithm and robotic experiments. Briefings Bioinf [Internet]. 2023;24(1):bbac570. [accessed 2023 May 1]. doi:10.1093/bib/bbac570/6958505.
  • Liu G, Zeng H, Mueller J, Carter B, Wang Z, Schilz J, Horny G, Birnbaum ME, Ewert S, Gifford DK, et al. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics. 2020;36(7):2126–33. doi:10.1093/bioinformatics/btz895.
  • Makowski EK, Kinnunen PC, Huang J, Wu L, Smith MD, Wang T, Desai AA, Streu CN, Zhang Y, Zupancic JM, et al. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Nat Commun [Internet]. 2022;13(1):3788. [accessed 2023 May 1]. doi:10.1038/s41467-022-31457-3.
  • Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, Meng SM, Ehling RA, Bonati L, Dahinden J, Gainza P, et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat Biomed Eng. 2021;5(6):600–12. doi:10.1038/s41551-021-00699-9.
  • Parkinson J, Hard R, Wang W. The RESP AI model accelerates the identification of tight-binding antibodies. Nat Commun. 2023;14(1):454. [accessed 2023 May 1]. https://www.nature.com/articles/s41467-023-36028-8.
  • Saka K, Kakuzaki T, Metsugi S, Kashiwagi D, Yoshida K, Wada M, Tsunoda H, Teramoto R. Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci Rep [Internet]. 2021;11(1):5852. [accessed 2023 May 1]. https://www.nature.com/articles/s41598-021-85274-7.