5,928
Views
1
CrossRef citations to date
0
Altmetric
Review

Monoclonal antibody and protein therapeutic formulations for subcutaneous delivery: high-concentration, low-volume vs. low-concentration, high-volume

, , , &
Article: 2285277 | Received 05 Oct 2023, Accepted 15 Nov 2023, Published online: 27 Nov 2023

References

  • Zhao L, Ren TH, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin. 2012;33(11):1339–19. doi:10.1038/aps.2012.51.
  • Martins AC, Oshiro MY, Albericio F, de la Torre BG, Pereira GJV, Gonzaga RV. Trends and perspectives of biological drug approvals by the FDA: a review from 2015 to 2021. Biomedicines. 2022;10(9). doi:10.3390/biomedicines10092325.
  • Lyu X, Zhao Q, Hui J, Wang T, Lin M, Wang K, Zhang J, Shentu J, Dalby PA, Zhang H, et al. The global landscape of approved antibody therapies. Antib Ther. 2022;5(4):233–57. doi:10.1093/abt/tbac021.
  • Senior M. Fresh from the biotech pipeline: fewer approvals, but biologics gain share. Nat Biotechnol. 2023;41(2):174–82. doi:10.1038/s41587-022-01630-6.
  • Badkar AV, Gandhi RB, Davis SP, Labarre MJ. Subcutaneous delivery of high-dose/volume biologics: current status and prospect for future advancements. Drug Des Devel Ther. 2021;15:159–70. doi:10.2147/dddt.s287323.
  • Zharkov A, Barton B, Heinzmann D, Bakalos G, Schreitmüller T. Development pathways for subcutaneous formulations of biologics versus biosimilar development. Expert Rev Precis Med Drug Dev. 2022;7(1):62–69. doi:10.1080/23808993.2019.1585806.
  • Garidel P, Kuhn AB, Schäfer LV, Karow-Zwick AR, Blech M. High-concentration protein formulations: how high is high? Eur J Pharm Biopharm. 2017;119:353–60. doi:10.1016/j.ejpb.2017.06.029.
  • Matucci A, Vultaggio A, Danesi R. The use of intravenous versus subcutaneous monoclonal antibodies in the treatment of severe asthma: a review. Respir Res. 2018;19(1):154. doi:10.1186/s12931-018-0859-z.
  • Li Z, Easton R. Practical considerations in clinical strategy to support the development of injectable drug-device combination products for biologics. MAbs. 2018;10(1):18–33. doi:10.1080/19420862.2017.1392424.
  • Collins DS, Sánchez-Félix M, Badkar AV, Mrsny R. Accelerating the development of novel technologies and tools for the subcutaneous delivery of biotherapeutics. J Control Release. 2020;321:475–82. doi:10.1016/j.jconrel.2020.02.036.
  • Sánchez-Félix M, Burke M, Chen HH, Patterson C, Mittal S. Predicting bioavailability of monoclonal antibodies after subcutaneous administration: open innovation challenge. Adv Drug Deliv Rev. 2020;167:66–77. doi:10.1016/j.addr.2020.05.009.
  • Bittner B, Richter W, Schmidt J. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. BioDrugs. 2018;32(5):425–40. doi:10.1007/s40259-018-0295-0.
  • Minchom AR. Subcutaneous amivantamab (ami) in patients (pts) with advanced solid malignancies: the PALOMA study—updated safety and identification of the recommended phase 2 dose. Poster presented at: 2023 ASCO Annual Meeting; 2023; Chicago, IL. Session Lung Cancer–Non-Small Cell Metastatic.
  • Mateos MV, Nahi H, Legiec W, Grosicki S, Vorobyev V, Spicka I, Hungria V, Korenkova S, Bahlis N, Flogegard M, et al. Subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma (COLUMBA): a multicentre, open-label, non-inferiority, randomised, phase 3 trial. Lancet Haematol. 2020;7(5):e370–e80. doi:10.1016/s2352-3026(20)30070-3.
  • Hendrikx JJMA, Haanen JBAG, Voest EE, Schellens JHM, Huitema ADR, Beijnen JH. Fixed dosing of monoclonal antibodies in oncology. Oncologist. 2017;22(10):1212–21. doi:10.1634/theoncologist.2017-0167.
  • Dekhtiarenko I, Lelios I, Attig J, Sleiman N, Lazzaro D, Schindler E, Eckmann J, Umana P, Jacob W, Schneider M, et al. Intravenous and subcutaneous administration of RG6234, a novel GPRC5DxCD3 T-cell engaging bispecific antibody, is highly active in patients with relapsed/refractory multiple myeloma (RRMM): biomarker results from a phase I study. Blood. 2022;140(Supplement 1):10137–39. doi:10.1182/blood-2022-158146.
  • Jiskoot W, Hawe A, Menzen T, Volkin DB, Crommelin DJA. Ongoing challenges to develop high concentration monoclonal antibody-based formulations for subcutaneous administration: quo vadis? J Pharm Sci. 2022;111(4):861–67. doi:10.1016/j.xphs.2021.11.008.
  • Slavcev M, Spinelli A, Absalon E, Masterson T, Heuck C, Lam A, De Cock E. Results of a time and motion survey regarding subcutaneous versus intravenous administration of daratumumab in patients with relapsed or refractory multiple myeloma. Clin Outcomes Res. 2021;13:465–73. doi:10.2147/ceor.S302682.
  • De Cock E, Kritikou P, Sandoval M, Tao S, Wiesner C, Carella AM, Ngoh C, Waterboer T. Time savings with rituximab subcutaneous injection versus rituximab intravenous infusion: a time and motion study in eight countries. PLoS ONE. 2016;11(6):e0157957. doi:10.1371/journal.pone.0157957.
  • De Cock E, Pivot X, Hauser N, Verma S, Kritikou P, Millar D, Knoop A. A time and motion study of subcutaneous versus intravenous trastuzumab in patients with HER2-positive early breast cancer. Cancer Med. 2016;5(3):389–97. doi:10.1002/cam4.573.
  • Gelhorn HL, Balantac Z, Ambrose CS, Chung YN, Stone B. Patient and physician preferences for attributes of biologic medications for severe asthma. Patient Prefer Adherence. 2019;13:1253–68. doi: 10.2147/ppa.S198953.
  • Pivot X, Gligorov J, Müller V, Curigliano G, Knoop A, Verma S, Jenkins V, Scotto N, Osborne S, Fallowfield L, et al. Patients’ preferences for subcutaneous trastuzumab versus conventional intravenous infusion for the adjuvant treatment of HER2-positive early breast cancer: final analysis of 488 patients in the international, randomized, two-cohort PrefHer study. Ann Oncol. 2014;25(10):1979–87. doi:10.1093/annonc/mdu364.
  • Overton PM, Shalet N, Somers F, Allen JA. Patient preferences for subcutaneous versus intravenous administration of treatment for chronic immune system disorders: a systematic review. Patient Prefer Adherence. 2021;15:811–34. doi:10.2147/ppa.S303279.
  • Epstein RS. Payer perspectives on intravenous versus subcutaneous administration of drugs. Clin Outcomes Res. 2021;13:801–07. doi:10.2147/ceor.S317687.
  • Polinski JM, Kowal MK, Gagnon M, Brennan TA, Shrank WH. Home infusion: safe, clinically effective, patient preferred, and cost saving. Healthcare. 2017;5(1):68–80. doi:10.1016/j.hjdsi.2016.04.004.
  • Gandhi MD, Shapouri S, Ravelo A, Sudharshan L, Beeks A, Dawson KL. NHL patients and nurses in the US prefer subcutaneous rituximab injection versus intravenous rituximab infusion: a real-world study. Blood. 2020;136(Supplement 1):7–9. doi:10.1182/blood-2020-136543.
  • Tsiantou V, Athanasakis K, Theodoropoulou F, Kyriopoulos J. Patients’ and health professionals’ preferences regarding intravenous vs subcutaneous drug administration: a literature review. Value Health. 2015;(7):A742. doi:10.1016/j.jval.2015.09.2852.
  • Leveque D. Subcutaneous administration of anticancer agents. Anticancer Res. 2014;34:1579–86.
  • Usach I, Martinez R, Festini T, Peris J-E. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv Ther. 2019;36(11):2986–96. doi:10.1007/s12325-019-01101-6.
  • Chari A, Rodriguez-Otero P, McCarthy H, Suzuki K, Hungria V, Sureda Balari A, Perrot A, Hulin C, Magen H, Iida S, et al. Subcutaneous daratumumab plus standard treatment regimens in patients with multiple myeloma across lines of therapy (PLEIADES): an open-label phase II study. Br J Haematol. 2021;192(5):869–78. doi:10.1111/bjh.16980.
  • Desai M. Exploring U.S. payer perspectives on a large-volume subcutaneous on-body delivery system: a double-blinded preference study. Poster presented at: 2023 PDA Universe of Pre-Filled Syringes and Injection Devices Conference: 20 Years of Innovation in Drug Delivery - What’s Next?; 17-18 Oct 2023; Gothenburg, Sweden.
  • Mathaes R, Koulov A, Joerg S, Mahler H-C. Subcutaneous injection volume of biopharmaceuticals: pushing the boundaries. J Pharm Sci. 2016;105(8):P2255–P2259. doi:10.1016/j.xphs.2016.05.029.
  • Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–402. doi:10.1002/jps.20079.
  • Strickley RG, Lambert WJ. A review of formulations of commercially available antibodies. J Pharm Sci. 2021;110(7):2590–608.e56. doi:10.1016/j.xphs.2021.03.017.
  • Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol. 2014;30:211–17. doi:10.1016/j.copbio.2014.08.001.
  • Viola M, Sequeira J, Seiça R, Veiga, F, Serra, J, Santos, AC, Ribeiro, AJ et al. Subcutaneous delivery of monoclonal antibodies: how do we get there? J Control Release. 2018;286:301–14. doi:10.1016/j.jconrel.2018.08.001.
  • Bowen M, Armstrong N, Maa YF. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection. J Pharm Sci. 2012;101(12):4433–43. doi:10.1002/jps.23324.
  • Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J Pharm Sci. 2008;97(10):4219–27. doi:10.1002/jps.21322.
  • Liu J, Nguyen MDH, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94(9):1928–40. doi:10.1002/jps.20347.
  • Zarzar J, Khan T, Bhagawati M, Weiche B, Sydow-Andersen J, Alavattam S. High concentration formulation developability approaches and considerations. MAbs. 2023;15(1):2211185. doi:10.1080/19420862.2023.2211185.
  • Deokar V, Sharma A, Mody R, Volety SM. Comparison of strategies in development and manufacturing of low viscosity, ultra-high concentration formulation for IgG1 antibody. J Pharm Sci. 2020;109(12):3579–89. doi:10.1016/j.xphs.2020.09.014.
  • Ammor W, Chapron P, Goubil A, Fronteau C, Peyrilles E, Cormier N. Optimization of the subcutaneous administration of daratumumab. Poster presented at: European Association of Hospital Pharmacists 26th Congress; 23–25 March 2022; Vienna, Austria.
  • Arendt-Nielsen L, Egekvist H, Bjerring P. Pain following controlled cutaneous insertion of needles with different diameters. Somatosens Mot Res. 2006;23(1–2):37–43. doi:10.1080/08990220600700925.
  • Jaber A, Bozzato GB, Vedrine L, Prais WA, Berube J, Laurent PE. A novel needle for subcutaneous injection of interferon beta-1a: effect on pain in volunteers and satisfaction in patients with multiple sclerosis. BMC Neurol. 2008;8(1):38. doi:10.1186/1471-2377-8-38.
  • Wågø KJ, Skarsvåg TI, Lundbom JS, Tangen, LF, Ballo, S, Hjelseng, T, Finsen, V et al. The importance of needle gauge for pain during injection of lidocaine. J Plast Surg Hand Surg. 2016;50(2):115–18. doi:10.3109/2000656x.2015.1111223.
  • Watt RP, Khatri H, Dibble ARG. Injectability as a function of viscosity and dosing materials for subcutaneous administration. Int J Pharm. 2019;554:376–86. doi:10.1016/j.ijpharm.2018.11.012.
  • St Clair-Jones A, Prignano F, Goncalves J, Paul M, Sewerin P. Understanding and minimising injection-site pain following subcutaneous administration of biologics: a narrative review. Rheumatol Ther. 2020;7(4):741–57. doi:10.1007/s40744-020-00245-0.
  • Rini CJ, Roberts BC, Vaidyanathan A, Li, A, Klug, R, Sherman, DB, Pettis, RJ et al. Enabling faster subcutaneous delivery of larger volume, high viscosity fluids. Expert Opin Drug Deliv. 2022 Sep;19(9):1165–76. doi:10.1080/17425247.2022.2116425.
  • Lou H, Feng M, Hageman MJ. Advanced formulations/drug delivery systems for subcutaneous delivery of protein-based biotherapeutics. J Pharm Sci. 2022;111(11):2968–82. doi:10.1016/j.xphs.2022.08.036.
  • Johnston KP, Maynard JA, Truskett TM, Borwankar, AU, Miller, MA, Wilson, BK, Dinin, AK, Khan, TA, Kaczorowski, KJ et al. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers. Acs Nano. 2012;6(2):1357–69. doi:10.1021/nn204166z.
  • Miller MA, Khan TA, Kaczorowski KJ, Wilson BK, Dinin AK, Borwankar AU, Rodrigues MA, Truskett TM, Johnston KP, Maynard JA, et al. Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and in vivo bioavailability. J Pharm Sci. 2012;101(10):3763–78. doi:10.1002/jps.23256.
  • Krayukhina E, Fukuhara A, Uchiyama S. Assessment of the injection performance of a tapered needle for use in prefilled biopharmaceutical products. J Pharm Sci. 2020;109(1):515–23. doi:10.1016/j.xphs.2019.10.033.
  • Pager A, Combedazou A, Guerrero K, Tzvetkova-Chevolleau T, Morel D, Frolet C, Glezer S et al. User experience for manual injection of 2 mL viscous solutions is enhanced by a new prefillable syringe with a staked 8 mm ultra-thin wall needle. Expert Opin Drug Deliv. 2020;17(10):1485–98. doi:10.1080/17425247.2020.1796630.
  • Lopez M, Physiology HC. Osmosis. StatPearls [Internet]. 2023.
  • Broadhead J, Gibson M. Parenteral dosage forms. In: Gibson M, editor. Pharmaceutical preformulation and formulation: a practical guide from candidate drug selection to commercial dosage form. 2nd ed. 2009. p. 325–47. Boca Raton, Florida, USA: CRC Press.
  • Wang W. Tolerability of hypertonic injectables. Int J Pharm. 2015;490(1–2):308–15. doi:10.1016/j.ijpharm.2015.05.069.
  • Tyler-Cross R, Schirch V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J Biol Chem. Nov 25 1991;266(33):22549–56. doi:10.1016/S0021-9258(18)54607-X.
  • Cacia J, Keck R, Presta LG, Frenz J. Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry. 1996;35(6):1897–903. doi:10.1021/bi951526c.
  • Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;109(1):169–90. doi:10.1016/j.xphs.2019.08.009.
  • Coghlan J, Benet A, Kumaran P, Ford M, Veale L, Skilton SJ, Saveliev S, Schwendeman AA. Streamlining the characterization of disulfide bond shuffling and protein degradation in IgG1 biopharmaceuticals under native and stressed conditions. Front Bioeng Biotechnol. 2022;10:862456. doi:10.3389/fbioe.2022.862456.
  • Arora J, Hickey JM, Majumdar R, Esfandiary R, Bishop SM, Samra HS, Middaugh CR, Weis DD, Volkin DB. Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody. MAbs. 2015;7(3):525–39. doi:10.1080/19420862.2015.1029217.
  • Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv. 2019;37(7):107412. doi:10.1016/j.biotechadv.2019.06.011.
  • Shi GH, Pisupati K, Parker JG, Corvari VJ, Payne CD, Xu W, Collins DS, De Felippis MR. Subcutaneous injection site pain of formulation matrices. Pharm Res. 2021;38(5):779–93. doi:10.1007/s11095-021-03047-3.
  • Laursen T, Hansen B, Fisker S. Pain perception after subcutaneous injections of media containing different buffers. Basic Clin Pharmacol Toxicol. 2006;98(2):218–21. doi:10.1111/j.1742-7843.2006.pto_271.x.
  • Moreau P, Coiteux V, Hulin C, Leleu X, van de Velde H, Acharya M, Harousseau J-L. Prospective comparison of subcutaneous versus intravenous administration of bortezomib in patients with multiple myeloma. Haematologica. 2008;93(12):1908–11. doi:10.3324/haematol.13285.
  • Lou H, Hageman MJ. Machine learning attempts for predicting human subcutaneous bioavailability of monoclonal antibodies. Pharm Res. 2021;38(3):451–60. doi:10.1007/s11095-021-03022-y.
  • Zou P. Predicting human bioavailability of subcutaneously administered fusion proteins and monoclonal antibodies using human intravenous clearance or antibody isoelectric point. AAPS J. 2023;25(3):31. doi:10.1208/s12248-023-00798-2.
  • Goswami S, Wang W, Arakawa T, Ohtake S. Developments and challenges for mAb-based therapeutics. Antibodies. 2013;2(4):452–500. doi:10.3390/antib2030452.
  • Bown HK, Bonn C, Yohe S, Yadav DB, Patapoff TW, Daugherty A, Mrsny RJ. In vitro model for predicting bioavailability of subcutaneously injected monoclonal antibodies. J Control Release. 2018;273:13–20. doi:10.1016/j.jconrel.2018.01.015.
  • Rotkopf H, Lévy M, Copie-Bergman C, Dupuis J, Verlinde-Carvalho M, Itti E, Gagniere C, Belhadj K, Tannoury J, Le Bras F, et al. Effectiveness and safety of subcutaneous rituximab for patients with gastric MALT lymphoma: a case–control comparison with intravenous rituximab. Clin Lymphoma Myeloma Leuk. 2021;21(1):e32–e38. doi:10.1016/j.clml.2020.08.014.
  • Jolles S, Rojavin MA, Lawo JP, Nelson R, Wasserman RL, Borte M, Tortorici MA, Imai K, Kanegane H. Long-term efficacy and safety of Hizentra® in patients with primary immunodeficiency in Japan, Europe, and the United States: a review of 7 phase 3 trials. J Clin Immunol. 2018;38(8):864–75. doi:10.1007/s10875-018-0560-5.
  • Westhovens R, Wiland P, Zawadzki M, Ivanova D, Kasay AB, El-Khouri EC, Balázs É, Shevchuk S, Eliseeva L, Stanislavchuk M, et al. Efficacy, pharmacokinetics and safety of subcutaneous versus intravenous CT-P13 in rheumatoid arthritis: a randomized phase I/III trial. Rheumatology (Oxford). 2021;60(5):2277–87. doi:10.1093/rheumatology/keaa580.
  • Hu B, Zhou Q, Wu T, Zhuang L, Yi L, Cao J, Yang X, Wang J. Efficacy and safety of subcutaneous versus intravenous bortezomib in multiple myeloma: a meta-analysis. Int J Clin Pharmacol Ther. 2017;55(4):329–38. doi:10.5414/cp202714.
  • Usmani SZ, Nahi H, Legiec W, Grosicki S, Vorobyev V, Spicka I, Hungria V, Korenkova S, Bahlis NJ, Flogegard M, et al. Final analysis of the phase III non-inferiority COLUMBA study of subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma. Haematologica. 2022;107(10):2408–17. doi:10.3324/haematol.2021.279459.
  • Xu Z, Leu JH, Xu Y, Nnane, I, Liva SG, Wang‐Lin SX, Kudgus‐Lokken R, Vermeulen, A, Ouellet D et al. Development of therapeutic proteins for a new subcutaneous route of administration after the establishment of intravenous dosages: a systematic review. Clin Pharmacol Ther. 2022. doi:10.1002/cpt.2823.
  • Pharmaceuticals A. BLA multi‐disciplinary review and evaluation BLA 761108 ultomiris (ravulizumab). Biologic license application. (18June2018).
  • Apellis announces U.S. Food and Drug Administration (FDA) approval of EMPAVELI™ (pegcetacoplan) for adults with paroxysmal nocturnal hemoglobinuria (PNH). 14 May 2021. https://investors.apellis.com/news-releases/news-release-details/apellis-announces-us-food-and-drug-administration-fda-approval.
  • Corrected supplement approval (2022).
  • Apellis announces U.S. FDA approval of the EMPAVELI® injector, a device to streamline self-administration. 2 Oct 2023. https://investors.apellis.com/news-releases/news-release-details/apellis-announces-us-fda-approval-empavelir-injector-device.
  • Wang DD, Zhang S, Zhao H, Men AY, Parivar K. Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol. 2009;49(9):1012–24. doi:10.1177/0091270009337512.
  • Dias C, Abosaleem B, Crispino C, Gao B, Shaywitz A. Tolerability of high-volume subcutaneous injections of a viscous placebo buffer: a randomized, crossover study in healthy subjects. AAPS Pharm Sci Tech. 2015;16(5):1101–07. doi:10.1208/s12249-015-0288-y.
  • Portron A, Jordan P, Draper K, Muenzer C, Dickerson D, van Iersel T, Hofmann C. A phase I study to assess the effect of speed of injection on pain, tolerability, and pharmacokinetics after high-volume subcutaneous administration of gantenerumab in healthy volunteers. Clin Ther. 2020;42(1):108–120. doi:10.1016/j.clinthera.2019.11.015.
  • Woodley WD, Morel DR, Sutter DE, Pettis RJ, Bolick NG. Clinical evaluation of large volume subcutaneous injection tissue effects, pain, and acceptability in healthy adults. Clin Transl Sci. 2022;15(1):92–104. doi:10.1111/cts.13109.
  • Carrara SC, Ulitzka M, Grzeschik J, Kornmann H, Hock B, Kolmar H. From cell line development to the formulated drug product: the art of manufacturing therapeutic monoclonal antibodies. Int J Pharm. 2021;594:120164. doi:10.1016/j.ijpharm.2020.120164.
  • Gely C, Marín L, Gordillo J, Mañosa M, Bertoletti F, Cañete F, González-Muñoza C, Calafat M, Domènech E, Garcia-Planella E, et al. Impact of pain associated with the subcutaneous administration of adalimumab. Gastroenterol Hepatol. 2020;43(1):9–13. doi:10.1016/j.gastrohep.2019.06.008.
  • Wasserman RL, Cunninham-Rundles C, Anderson J, Lugar P, Palumbo M, Patel NC, Hofmann J, Glassman F, Rogers E, Praus M, et al. Systemic IgG exposure and safety in patients with primary immunodeficiency: a randomized crossover study comparing a novel investigational wearable infusor versus the CRONO pump. Immunotherapy. 2022;14(16):1315–28. doi:10.2217/imt-2022-0097.
  • Alsbrooks K, Hoerauf K, Concerto C. Prevalence, causes, impacts, and management of needle phobia: an international survey of a general adult population. PLoS ONE. 2022;17(11):e0276814. doi:10.1371/journal.pone.0276814.
  • Makwana S, Basu B, Makasana Y, Dharamsi A. Prefilled syringes: an innovation in parenteral packaging. Int J Pharm Investig. 2011;1(4):200–06. doi:10.4103/2230-973x.93004.
  • Kivitz A, Cohen S, Dowd JE, Edwards W, Thakker S, Wellborne FR, Renz CL, Segurado OG. Clinical assessment of pain, tolerability, and preference of an autoinjection pen versus a prefilled syringe for patient self-administration of the fully human, monoclonal antibody adalimumab: the TOUCH trial. Clin Ther. 2006;28(10):1619–29. doi:10.1016/j.clinthera.2006.10.006.
  • Ghil J, Zielińska A, Lee Y. Usability and safety of SB5 (an adalimumab biosimilar) prefilled syringe and autoinjector in patients with rheumatoid arthritis. Curr Med Res Opin. 2019;35(3):497–502. doi:10.1080/03007995.2018.1560211.
  • Müller-Ladner U, Flipo RM, Vincendon P, Brault Y, Kielar D. Comparison of patient satisfaction with two different etanercept delivery systems: a randomised controlled study in patients with rheumatoid arthritis. Z Rheumatol. 2012;71(10):890–99. doi:10.1007/s00393-012-1034-4.
  • von Richter O, Skerjanec A, Afonso M, Sanguino Heinrich S, Poetzl J, Woehling H, Velinova M, Koch A, Kollins D, Macke L, et al. GP2015, a proposed etanercept biosimilar: pharmacokinetic similarity to its reference product and comparison of its autoinjector device with prefilled syringes. Br J Clin Pharmacol. 2017;83(4):732–41. doi:10.1111/bcp.13170.
  • Paul C, Stalder JF, Thaçi D, Vincendon P, Brault Y, Kielar D, Tebbs V. Patient satisfaction with injection devices: a randomized controlled study comparing two different etanercept delivery systems in moderate to severe psoriasis. J Eur Acad Dermatol Venereol. 2012;26(4):448–55. doi:10.1111/j.1468-3083.2011.04093.x.
  • Wasserman RL, Melamed I, Stein M, Engl, W, Leibl, H, McCoy, B, Gelmont, D, Schiff, RI et al. Pharmacokinetics of recombinant human hyaluronidase (rHUPH20)-facilitated subcutaneous infusion of immune globulin (human), 10% (IGHy) in patients with primary immunodeficiency disease (PI). Annual Scientific Meeting of the American College of Allergy, Asthma, & Immunology; 2011; 3-8 November 2011 Boston, MA, USA.
  • Locke KW, Maneval DC, LaBarre MJ. ENHANZE® drug delivery technology: a novel approach to subcutaneous administration using recombinant human hyaluronidase PH20. Drug Deliv. 2019;26(1):98–106. doi:10.1080/10717544.2018.1551442.
  • Dolton MJ, Chesterman A, Moein A, Sink KM, Waitz A, Blondeau K, Kerchner GA, Hu N, Brooks L, Wetzel‐Smith MK, et al. Safety, tolerability, and pharmacokinetics of high-volume subcutaneous crenezumab, with and without recombinant human hyaluronidase in healthy volunteers. Clin Pharmacol Ther. 2021;110(5):1337–48. doi:10.1002/cpt.2385.
  • Argenx announces data from phase 1 study of efgartigimod (ARGX-113) subcutaneous formulation demonstrating comparable characteristics to intravenous formulation. 14 June, 2018. http://www.argenx.com.
  • U.S. Food and Drug Administration. Herceptin HYLECTA Package Insert 2019. Accessed 10 August 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761106s000lbl.pdf.
  • Duco MR, Murdock JL, Reeves DJ. Trastuzumab/hyaluronidase-oysk: a new option for patients with HER2-positive breast cancer. Ann Pharmacother. 2020;54(3):254–61. doi:10.1177/1060028019877936.
  • Quartino AL, Hillenbach C, Li J, Li H, Wada RD, Visich J, Li C, Heinzmann D, Jin JY, Lum BL, et al. Population pharmacokinetic and exposure–response analysis for trastuzumab administered using a subcutaneous “manual syringe” injection or intravenously in women with HER2-positive early breast cancer. Cancer Chemother Pharmacol. 2016;77(1):77–88. doi:10.1007/s00280-015-2922-5.
  • Hourcade-Potelleret F, Lemenuel-Diot A, McIntyre C, Brewster M, Lum B, Bittner B. Use of a population pharmacokinetic approach for the clinical development of a fixed-dose subcutaneous formulation of trastuzumab. CPT Pharmacometrics Syst Pharma. 2014;3(1):1–9. doi:10.1038/psp.2013.63.
  • U.S. Food and Drug Administration. RITUXAN HYCELA Package Insert 2017. Accessed 10 August 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761064s000lbl.pdf.
  • U.S. Food and Drug Administration. PHESGO Package Insert 2020. Accessed 10 August 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761170s000lbl.pdf.
  • Tan AR, Im SA, Mattar A, Colomer R, Stroyakovskii D, Nowecki Z, De Laurentiis M, Pierga J-Y, Jung KH, Schem C, et al. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDerica): a randomised, open-label, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2021;22(1):85–97. doi:10.1016/s1470-2045(20)30536-2.
  • Luo MM, Usmani SZ, Mateos MV, Nahi H, Chari A, San‐Miguel J, Touzeau C, Suzuki K, Kaiser M, Carson R, et al. Exposure-response and population pharmacokinetic analyses of a novel subcutaneous formulation of daratumumab administered to multiple myeloma patients. J Clin Pharmacol. 2021;61(5):614–27. doi:10.1002/jcph.1771.
  • Abdallah H, Hsu JC, Lu P, Fettner S, Zhang X, Douglass W, Bao M, Rowell L, Burmester GR, Kivitz A, et al. Pharmacokinetic and pharmacodynamic analysis of subcutaneous tocilizumab in patients with rheumatoid arthritis from 2 randomized, controlled trials: SUMMACTA and BREVACTA. J Clin Pharmacol. 2017;57(4):459–68. doi:10.1002/jcph.826.
  • Morcos PN, Zhang X, McIntyre C, Bittner B, Rowell L, Hussain Z. Pharmacokinetics and pharmacodynamics of single subcutaneous doses of tocilizumab administered with or without rHuph20. Int J Clin Pharmacol Ther. 2013;51(7):537–48. doi:10.5414/cp201847.
  • Schneider A, Kolrep H, Horn H-P, Jordi C, Gierig S, Lange J. Understanding patient preferences for handheld autoinjectors versus wearable large-volume injectors. Expert Opin Drug Deliv. 2023;20(2):273–83. doi:10.1080/17425247.2022.2162037.
  • Kishimoto H, Maehara M. Compliance and persistence with daily, weekly, and monthly bisphosphonates for osteoporosis in Japan: analysis of data from the CISA. Arch Osteoporos. 2015;10(1):231. doi:10.1007/s11657-015-0231-6.
  • Wang SS, Yan Y, Ho K. US FDA-approved therapeutic antibodies with high-concentration formulation: summaries and perspectives. Antib Ther. 2021;4(4):262–72. doi:10.1093/abt/tbab027.
  • Styles IK, Feeney OM, Nguyen TH, Brundel DHS, Kang DW, Clift R, McIntosh MP, Porter CJH. Removal of interstitial hyaluronan with recombinant human hyaluronidase improves the systemic and lymphatic uptake of cetuximab in rats. J Control Release. 2019;315:85–96. doi:10.1016/j.jconrel.2019.10.040.
  • Trevino SR, Scholtz JM, Pace CN. Measuring and increasing protein solubility. J Pharm Sci. 2008;97(10):4155–66. doi:10.1002/jps.21327.
  • Holstein M, Hung J, Feroz H, Ranjan S, Du C, Ghose S, Li ZJ. Strategies for high-concentration drug substance manufacturing to facilitate subcutaneous administration: a review. Biotechnol Bioeng. 2020;117(11):3591–606. doi:10.1002/bit.27510.
  • Shire SJ. Formulation and manufacturability of biologics. Curr Opin Biotechnol. 2009;20(6):708–14. doi:10.1016/j.copbio.2009.10.006.
  • Yadav S, Liu J, Scherer TM, Gokarn Y, Demeule B, Kanai S, Andya JD, Shire SJ. Assessment and significance of protein–protein interactions during development of protein biopharmaceuticals. Biophys Rev. 2013;5(2):121–36. doi:10.1007/s12551-013-0109-z.
  • Baek Y, Zydney AL. Intermolecular interactions in highly concentrated formulations of recombinant therapeutic proteins. Curr Opin Biotechnol. 2018;53:59–64. doi:10.1016/j.copbio.2017.12.016.
  • Jarvi NL, Balu-Iyer SV. Immunogenicity challenges associated with subcutaneous delivery of therapeutic proteins. BioDrugs. 2021;35(2):125–46. doi:10.1007/s40259-020-00465-4.
  • Blaffert J, Haeri HH, Blech M, Hinderberger D, Garidel P. Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Anal Biochem. 2018;561-562:70–80. doi:10.1016/j.ab.2018.09.013.
  • Andrews JM, Roberts CJ. A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. J Phys Chem B. 2007;111(27):7897–913. doi:10.1021/jp070212j.
  • Narhi LO, Jiang Y, Cao S, Benedek K, Shnek D. A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechnol. 2009;10(4):373–81. doi:10.2174/138920109788488905.
  • Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Russell Middaugh C, Winter G, Fan Y-X, Kirshner S, Verthelyi D, Kozlowski S, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–05. doi:10.1002/jps.21530.
  • Filipe V, Poole R, Oladunjoye O, Braeckmans K, Jiskoot W. Detection and characterization of subvisible aggregates of monoclonal IgG in serum. Pharm Res. 2012;29(8):2202–12. doi:10.1007/s11095-012-0749-x.
  • Andya JD, Hsu CC, Shire SJ. Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS PharmSci. 2003;5(2):E10. doi:10.1208/ps050210.
  • Malencik DA, Anderson SR. Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids. 2003;25(3–4):233–47. doi:10.1007/s00726-003-0014-z.
  • Saluja A, Kalonia DS. Nature and consequences of protein-protein interactions in high protein concentration solutions. Int J Pharm. 2008;358(1–2):1–15. doi:10.1016/j.ijpharm.2008.03.041.
  • Esfandiary R, Hayes DB, Parupudi A, Casas‐Finet J, Bai S, Samra HS, Shah AU, Sathish HA. A systematic multitechnique approach for detection and characterization of reversible self-association during formulation development of therapeutic antibodies. J Pharm Sci. 2013;102(1):62–72. doi:10.1002/jps.23369.
  • Mason BD, Zhang L, Remmele RL Jr., Zhang J. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation. J Pharm Sci. 2011;100(11):4587–96. doi:10.1002/jps.22650.
  • Treuheit MJ, Kosky AA, Brems DN. Inverse relationship of protein concentration and aggregation. Pharm Res. 2002;19(4):511–16. doi:10.1023/a:1015108115452.
  • Jin W, Xing Z, Song Y, Huang C, Xu X, Ghose S, Li ZJ. Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. MAbs. 2019;11(8):1479–91. doi:10.1080/19420862.2019.1658493.
  • Kizuki S, Wang Z, Torisu T, Yamauchi S, Uchiyama S. Relationship between aggregation of therapeutic proteins and agitation parameters: acceleration and frequency. J Pharm Sci. 2023;112(2):492–505. doi:10.1016/j.xphs.2022.09.022.
  • Yoneda S, Torisu T, Uchiyama S. Development of syringes and vials for delivery of biologics: current challenges and innovative solutions. Expert Opin Drug Deliv. 2021;18(4):459–70. doi:10.1080/17425247.2021.1853699.
  • Baert F, Noman M, Vermeire S, Van Assche G, D’ Haens G, Carbonez A, Rutgeerts P. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–08. doi:10.1056/nejmoa020888.
  • Sorensen PS, Ross C, Clemmesen KM, Bendtzen K, Frederiksen JL, Jensen K, Kristensen O, Petersen T, Rasmussen S, Ravnborg M, et al. Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet. 2003;362(9391):1184–91. doi:10.1016/s0140-6736(03)14541-2.
  • Bennett CL, Luminari S, Nissenson AR, Tallman MS, Klinge SA, McWilliams N, McKoy JM, Kim B, Lyons EA, Trifilio SM et al. Pure red-cell aplasia and epoetin therapy. N Engl J Med. 2004;351(14):1403–08. doi:10.1056/nejmoa040528.
  • Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, Kuter DJ. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood. 2001;98(12):3241–48. doi:10.1182/blood.v98.12.3241.
  • Peng A, Gaitonde P, Kosloski MP, Miclea RD, Varma P, Balu-Iyer SV. Effect of route of administration of human recombinant factor VIII on its immunogenicity in hemophilia a mice. J Pharm Sci. 2009;98(12):4480–84. doi:10.1002/jps.21765.
  • Schellekens H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant. 2005;20(Suppl 6):vi3–9. doi:10.1093/ndt/gfh1092.
  • Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354–87. doi:10.1002/jps.22276.
  • Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55. doi:10.1016/j.clim.2013.09.006.
  • Schunk MK, Macallum GE. Applications and optimization of immunization procedures. ILAR J. 2005;46(3):241–57. doi:10.1093/ilar.46.3.241.
  • Bartelds GM. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA. 2011;305(14):1460. doi:10.1001/jama.2011.406.
  • Padrón IM, García JG, Díaz RR, Lenza IC, Nicolás FG. Anti-drug antibodies anti-trastuzumab in the treatment of breast cancer. J Oncol Pharm Pract. 2021 Sep;27(6):1354–56. doi:10.1177/1078155220953873.
  • Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, Humbert M, Katz LE, Keene ON, Yancey SW et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–207. doi:10.1056/NEJMoa1403290.
  • Genovese MC, Covarrubias A, Leon G, Mysler E, Keiserman M, Valente R, Nash P, Simon‐Campos JA, Porawska W, Box J, et al. Subcutaneous abatacept versus intravenous abatacept: a phase IIIb noninferiority study in patients with an inadequate response to methotrexate. Arthritis Rheum. 2011;63(10):2854–64. doi:10.1002/art.30463.
  • Sandborn WJ, Baert F, Danese S, Krznarić Ž, Kobayashi T, Yao X, Chen J, Rosario M, Bhatia S, Kisfalvi K, et al. Efficacy and safety of vedolizumab subcutaneous formulation in a randomized trial of patients with ulcerative colitis. Gastroenterology. 2020;158(3):562–72.e12. doi:10.1053/j.gastro.2019.08.027.
  • Burmester GR, Rubbert-Roth A, Cantagrel A, Hall S, Leszczynski P, Feldman D, Rangaraj MJ, Roane G, Ludivico C, Lu P, et al. A randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study). Ann Rheum Dis. 2014;73(1):69–74. doi:10.1136/annrheumdis-2013-203523.
  • Agius MA, Klodowska-Duda G, Maciejowski M, Potemkowski A, Li J, Patra K, Wesley J, Madani S, Barron G, Katz E, et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult Scler J. 2019;25(2):235–45. doi:10.1177/1352458517740641.
  • Parnes JR, Sullivan JT, Chen L, Dias C. Pharmacokinetics, safety, and tolerability of tezepelumab (AMG 157) in healthy and atopic dermatitis adult subjects. Clin Pharmacol Ther. 2019;106(2):441–49. doi:10.1002/cpt.1401.