5,105
Views
2
CrossRef citations to date
0
Altmetric
Report

Epitope mapping of monoclonal antibodies: a comprehensive comparison of different technologies

, , , , , , , , , , , , , , , , & show all
Article: 2285285 | Received 02 Nov 2022, Accepted 15 Nov 2023, Published online: 27 Nov 2023

References

  • Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 2019;37(1):9–12. doi:10.1016/j.tibtech.2018.05.014.
  • Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021;20(7):491–95. doi:10.1038/d41573-021-00079-7.
  • Sukumar S, Wilson DC, Yu Y, Wong J, Naravula S, Ermakov G, Riener R, Bhagwat B, Necheva AS, Grein J, et al. Characterization of MK-4166, a clinical agonistic antibody that targets human GITR and inhibits the generation and suppressive effects of T regulatory cells. Cancer Res. 2017;77(16):4378–88. 1439.2016. doi:10.1158/0008-5472.CAN-16-1439.
  • van Meerten T, Rozemuller H, Hol S, Moerer P, Zwart M, Hagenbeek A, Mackus WJM, Parren PWHI, van de Winkel JGJ, Ebeling SB, et al. HuMab-7D8, a monoclonal antibody directed against the membrane-proximal small loop epitope of CD20 can effectively eliminate CD20low expressing tumor cells that resist Rituximab mediated lysis. Haematologica. 2010;95(12):2063–71. haematol.2010.025783. doi:10.3324/haematol.2010.025783.
  • He W, Tan GS, Mullarkey CE, Lee AJ, Lam MMW, Krammer F, Henry C, Wilson PC, Ashkar AA, Palese P, et al. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc Natl Acad Sci USA. 2016;113(42):11931. doi:10.1073/pnas.1609316113.
  • de Goeij BECG, Peipp M, de Haij S, van den Brink EN, Kellner C, Riedl T, de Jong R, Vink T, Strumane K, Bleeker WK, et al. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design. MAbs. 2014;6(2):392–402. doi:10.4161/mabs.27705.
  • Deng X, Storz U, Doranz BJ. Enhancing antibody patent protection using epitope mapping information. MAbs. 2018;10(2):204–09. doi:10.1080/19420862.2017.1402998.
  • Acchione M, Lipschultz CA, DeSantis ME, Shanmuganathan A, Li M, Wlodawer A, Tarasov S, Smith-Gill SJ. Light chain somatic mutations change thermodynamics of binding and water coordination in the HyHEL-10 family of antibodies. Mol Immunol. 2009;47(2–3):457–64. doi:10.1016/j.molimm.2009.08.018.
  • Gribenko AV, Parris K, Mosyak L, Li S, Handke L, Hawkins JC, Severina E, Matsuka YV, Anderson AS. High resolution mapping of bactericidal monoclonal antibody binding epitopes on Staphylococcus aureus antigen MntC. PLoS Pathog. 2016;12(9):e1005908. doi:10.1371/journal.ppat.1005908.
  • Garman EF. Developments in X-ray crystallographic structure determination of biological macromolecules. Sci. 2014;343(6175):1102. doi:10.1126/science.1247829.
  • Zhang M, Huang R, Beno B, Deyanova E, Li J, Chen G, Gross M. Epitope and paratope mapping of PD-1/Nivolumab by mass spectrometry-based Hydrogen–deuterium exchange, cross-linking, and molecular docking. Anal Chem. 2020;92(13):9086–94. doi:10.1021/acs.analchem.0c01291.
  • Abbott WM, Damschroder MM, Lowe DC. Current approaches to fine mapping of antigen–antibody interactions. Immunology. 2014;142(4):526–35. doi:10.1111/imm.12284.
  • Liu X, Huang R, Zhao F, Chen G, Tao L. Advances in mass spectrometry-based epitope mapping of protein therapeutics. J Pharmaceut Biomed. 2022;215:114754. doi:10.1016/j.jpba.2022.114754.
  • Leitner A. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem Sci. 2016;7(8):4792–803. doi:10.1039/C5SC04196A.
  • Lee JY, Lee HT, Shin W, Chae J, Choi J, Kim SH, Lim H, Won Heo T, Park KY, Lee YJ, et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun. 2016;7(1):13354. doi:10.1038/ncomms13354.
  • Ramagopal UA, Liu W, Garrett-Thomson SC, Bonanno JB, Yan Q, Srinivasan M, Wong SC, Bell A, Mankikar S, Rangan VS, et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc Natl Acad Sci USA. 2017;114(21):E4223. doi:10.1073/pnas.1617941114.
  • Bai A, Meetze K, Vo N, Kollipara S, Mazsa E, Winston W, Weiler S, Poling L, Chen T, Ismail N, et al. GP369, an FGFR2-IIIb–Specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res. 2010;70(19):7630–39. doi:10.1158/0008-5472.CAN-10-1489.
  • Wang C, Thudium K, Han M, Wang X, Huang H, Feingersh D, Garcia C, Wu Y, Kuhne M, Srinivasan M, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2(9):846–56. doi:10.1158/2326-6066.CIR-14-0040.
  • Guadagnoli M, Kimberley FC, Phan U, Cameron K, Vink PM, Rodermond H, Eldering E, Kater AP, van Eenennaam H, Medema JP, et al. Development and characterization of APRIL antagonistic monoclonal antibodies for treatment of B-cell lymphomas. Blood. 2011;117(25):6856–65. doi:10.1182/blood-2011-01-330852.
  • https://nationalmaglab.org/user-facilities/icr/techniques/hd-exchange.
  • Alverdi V, Mazon H, Versluis C, Hemrika W, Esposito G, van den Heuvel R, Scholten A, Heck AJR. cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain. J Mol Biol. 2008;375(5):1380–93. doi:10.1016/j.jmb.2007.11.053.
  • Huang W, Ravikumar K, Chance M, Mark R, Yang S. Quantitative mapping of protein structure by hydroxyl radical footprinting-mediated Structural mass spectrometry: a protection factor analysis. Biophys J. 2015;108(1):107–15. doi:10.1016/j.bpj.2014.11.013.
  • Maleknia SD, Downard KM. Radical approaches to probe protein structure, folding, and interactions by mass spectrometry. Mass Spectrom Rev. 2001;20(6):388–401. doi:10.1002/mas.10013.
  • Merkley ED, Rysavy S, Kahraman A, Hafen RP, Daggett V, Adkins JN. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine–lysine distances. Protein Sci. 2014;23(6):747–59. doi:10.1002/pro.2458.
  • Rand KD, Zehl M, Jørgensen TJD. Measuring the Hydrogen/Deuterium Exchange of Proteins at High Spatial Resolution by Mass Spectrometry: Overcoming Gas-Phase Hydrogen/Deuterium Scrambling. Acc Chem Res. 2014;47(10):3018–27. doi:10.1021/ar500194w.
  • Hamuro Y, E SY. Determination of backbone amide hydrogen exchange rates of cytochrome c using partially scrambled electron transfer dissociation data. J Am Soc Mass Spectrom. 2018;29(5):989–1001. doi:10.1007/s13361-018-1892-3.
  • Brodie NI, Huguet R, Zhang T, Viner R, Zabrouskov V, Pan J, Petrotchenko EV, Borchers CH. Top-down Hydrogen–deuterium exchange analysis of protein structures using ultraviolet photodissociation. Anal Chem. 2018;90(5):3079–82. doi:10.1021/acs.analchem.7b03655.
  • Schmitz C, Melquiond AS, de Vries SJ, Karaca E, van Dijk M, Kastritis PL, Bonvin AM. Protein–Protein Docking with HADDOCK. NMR Of Biomolecules. 2012;520–535. doi:10.1002/9783527644506.ch32.
  • Zhang Y, Rempel DL, Zhang H, Gross ML. An improved fast photochemical oxidation of proteins (FPOP) platform for protein therapeutics. J Am Soc Mass Spectrom. 2015;26(3):526–29. doi:10.1007/s13361-014-1055-0.
  • Chance MR, Farquhar ER, Yang S, Lodowski DT, Kiselar J. Protein footprinting: auxiliary engine to power the Structural biology revolution. J Mol Biol. 2020;432(9):2973–84. doi:10.1016/j.jmb.2020.02.011.
  • Meyerson JR, Kumar J, Chittori S, Rao P, Pierson J, Bartesaghi A, Mayer ML, Subramaniam S. Structural mechanism of glutamate receptor activation and desensitization. Nature. 2014;514(7522):328. https://www.nature.com/articles/nature13603#supplementary-information.
  • Bardelli M, Livoti E, Simonelli L, Pedotti M, Moraes A, Valente AP, Varani L. Epitope mapping by solution NMR spectroscopy. J Of Molecular Recognition. 2015;28(6):393–400. doi:10.1002/jmr.2454.
  • Monaco S, Tailford LE, Juge N, Angulo J. Differential epitope mapping by STD NMR spectroscopy to reveal the nature of protein–ligand contacts. Angew Chem Int Ed. 2017;56(48):15289–93. doi:10.1002/anie.201707682.
  • Renaud J-P, Chari A, Ciferri C, Liu W-T, Rémigy H-W, Stark H, Wiesmann C. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov. 2018;17(7):471–92. doi:10.1038/nrd.2018.77.
  • Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kühn U, Sinz A. StavroX—A software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom. 2012 Jan;23(1):76–87. doi:10.1007/s13361-011-0261-2.