1,402
Views
0
CrossRef citations to date
0
Altmetric
Report

Accelerating the speed of innovative anti-tumor drugs to first-in-human trials incorporating key de-risk strategies

, , , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Article: 2292305 | Received 17 Sep 2023, Accepted 04 Dec 2023, Published online: 14 Dec 2023

References

  • Scarcelli JJ, Shang TQ, Iskra T, Allen MJ, Zhang L. Strategic deployment of CHO expression platforms to deliver Pfizer’s monoclonal antibody portfolio. Biotechnol Prog. 2017 Nov;33(6):1463–11. doi:10.1002/btpr.2493. PMID: 28480558.
  • Wright C, Alves C, Kshirsagar R, Pieracci J, Estes S. Leveraging a CHO cell line toolkit to accelerate biotherapeutics into the clinic. Biotechnol Prog. 2017 Nov;33(6):1468–75. doi:10.1002/btpr.2548. PMID: 28842948.
  • Munro TP, Le K, Le H, Zhang L, Stevens J, Soice N, Benchaar SA, Hong RW, Goudar CT. Accelerating patient access to novel biologics using stable pool-derived product for non-clinical studies and single clone-derived product for clinical studies. Biotechnol Prog. 2017 Nov;33(6):1476–82. doi:10.1002/btpr.2572. PMID: 29055113.
  • Hu Z, Hsu W, Pynn A, Ng D, Quicho D, Adem Y, Kwong Z, Mauger B, Joly J, Snedecor B, et al. A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies. Biotechnol Prog. 2017 Nov;33(6):1449–55. doi:10.1002/btpr.2467. PMID: 28371489.
  • Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep. 2015 Feb;5(1):8572. doi:10.1038/srep08572. PMID: 25712033.
  • Rajendran S, Balasubramanian S, Webster L, Lee M, Vavilala D, Kulikov N, Choi J, Tang C, Hunter M, Wang R, et al. Accelerating and de-risking CMC development with transposon-derived manufacturing cell lines. Biotechnol Bioeng. 2021 Jun;118(6):2301–11. doi:10.1002/bit.27742. PMID: 33704772.
  • Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol Bioeng. 2012 Apr;109(4):1007–15. doi:10.1002/bit.24365. PMID: 22068567.
  • Fan L, Rizzi G, Bierilo K, Tian J, Yee JC, Russell R, Das TK. Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines. Biotechnol Prog. 2017 Nov;33(6):1456–62. doi:10.1002/btpr.2477. PMID: 28393481.
  • Bolisetty P, Tremml G, Xu S, Khetan A. Enabling speed to clinic for monoclonal antibody programs using a pool of clones for IND-enabling toxicity studies. MAbs. 2020 Jan–Dec;12(1):1763727. doi:10.1080/19420862.2020.1763727. PMID: 32449878.
  • Zhang Z, Chen J, Wang J, Gao Q, Ma Z, Xu S, Zhang L, Cai J, Zhou W. Reshaping cell line development and CMC strategy for fast responses to pandemic outbreak. Biotechnol Prog. 2021 Sep;37(5):e3186. doi:10.1002/btpr.3186. PMID: 34148295.
  • Kelley B. Developing therapeutic monoclonal antibodies at pandemic pace. Nat Biotechnol. 2020 May;38(5):540–45. doi:10.1038/s41587-020-0512-5. PMID: 32317764.
  • Tan KW, Ji P, Qian Z, Gao Q, Wang S, Li Q, Gu M, Zhang Q, Hou C, Huang Y, et al. Rapidly accelerated development of neutralizing COVID-19 antibodies by reducing cell line and CMC development timelines. Biotechnol Bioeng. 2022 Dec 8. doi: 10.1002/bit.28302. PMID: 36482495.
  • Agostinetto R, Rossi M, Dawson J, Lim A, Simoneau MH, Boucher C, Valldorf B, Ross-Gillespie A, Jardine JG, Sok D, et al. Rapid cGMP manufacturing of COVID-19 monoclonal antibody using stable CHO cell pools. Biotechnol Bioeng. 2022 Feb;119(2):663–66. doi:10.1002/bit.27995. PMID: 34796474.
  • Xu G, Yu C, Wang W, Fu C, Liu H, Zhu Y, Li Y, Liu C, Fu Z, Wu G, et al. Quality comparability assessment of a SARS-CoV-2-neutralizing antibody across transient, mini-pool-derived and single-clone CHO cells. MAbs. 2022 Jan–Dec;14(1):2005507. doi:10.1080/19420862.2021.2005507. PMID: 34923915.
  • Schmieder V, Fieder J, Drerup R, Gutierrez EA, Guelch C, Stolzenberger J, Stumbaum M, Mueller VS, Higel F, Bergbauer M, et al. Towards maximum acceleration of monoclonal antibody development: leveraging transposase-mediated cell line generation to enable GMP manufacturing within 3 months using a stable pool. J Biotechnol. 2022 Apr;349:53–64. doi10.1016/j.jbiotec.2022.03.010. PMID: 35341894.
  • Higgins MF, Abu-Absi N, Gontarz E, Gorr IH, Kaiser K, Patel P, Ritacco F, Sheehy P, Thangaraj B, Gill T. Accelerated CMC workflows to enable speed to clinic in the COVID-19 era: a multi-company view from the biopharmaceutical industry. Biotechnol Prog. 2023 Mar;39(2):e3321. doi:10.1002/btpr.3321. PMID: 36546782.
  • Majewska NI, Tejada ML, Betenbaugh MJ, Agarwal N. N-glycosylation of IgG and IgG-like recombinant therapeutic proteins: why is it important and how can we control it? Annu Rev Chem Biomol Eng. 2020 Jun 7;11(1):311–38. doi: 10.1146/annurev-chembioeng-102419-010001. PMID: 32176521.
  • Stuible M, van Lier F, Croughan MS, Durocher Y. Beyond preclinical research: production of CHO-derived biotherapeutics for toxicology and early-phase trials by transient gene expression or stable pools. Curr Opin Chem Eng. 2018 Dec;22:145–51. doi:10.1016/j.coche.2018.09.010.
  • Brunner M, Fricke J, Kroll P, Herwig C. Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng. 2017 Feb;40(2):251–63. doi:10.1007/s00449-016-1693-7. PMID: 27752770.
  • Schmelzer AE, Miller WM. Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Biotechnol Prog. 2002 Mar–Apr;18(2):346–53. doi:10.1021/bp010187d. PMID: 11934306.
  • Min H, Kim SM, Kim D, Lee S, Lee S, Lee JS. Hybrid cell line development system utilizing site-specific integration and methotrexate-mediated gene amplification in Chinese hamster ovary cells. Front Bioeng Biotechnol. 2022 Sep 15;10:977193. doi:10.3389/fbioe.2022.977193. PMID: 36185448.
  • Tevelev B, Patel H, Shields K, Wei W, Cooley C, Zhang S, Bitzas G, Duan W, Khetemenee L, Jackobek R, et al. Genetic rearrangement during site specific integration event facilitates cell line development of a bispecific molecule. Biotechnol Prog. 2021 Jul;37(4):e3158. doi:10.1002/btpr.3158. PMID: 33891804.
  • Rezvani K, WuDunn D, Hunter AK, Aspelund MT. Leveraging light chain binding avidity for control of mispaired byproducts during production of asymmetric bispecific antibodies. J Chromatogr A. 2022 Nov 8;1683:463533. doi:10.1016/j.chroma.2022.463533. PMID: 36195004.
  • Cao M, Parthemore C, Jiao Y, Korman S, Aspelund M, Hunter A, Kilby G, Chen X. Characterization and monitoring of a novel light-heavy-light chain mispair in a therapeutic bispecific antibody. J Pharm Sci. 2021 Aug;110(8):2904–15. doi:10.1016/j.xphs.2021.04.010. PMID: 33894207.
  • Larivière L, Krüger JE, von Hirschheydt T, Schlothauer T, Bray-French K, Bader M, Runza V. End-to-end approach for the characterization and control of product-related impurities in T cell bispecific antibody preparations. Int J Pharm X. 2023 Jan;5:100157. doi:10.1016/j.ijpx.2023.100157. PMID: 36687375.
  • Tarantino P, Modi S, Tolaney SM, Cortés J, Hamilton EP, Kim SB, Toi M, Andrè F, Curigliano G. Interstitial lung disease induced by anti-ERBB2 antibody-drug conjugates: a review. JAMA Oncol. 2021;7(12):1873–81. doi:10.1001/jamaoncol.2021.3595. PMID: 34647966.