264
Views
0
CrossRef citations to date
0
Altmetric
Review

Neuronal glycolysis: focus on developmental morphogenesis and localized subcellular functions

ORCID Icon
Article: 2343532 | Received 18 Dec 2023, Accepted 27 Feb 2024, Published online: 21 Apr 2024

References

  • Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol. 2021;13(5):a040535. doi: 10.1101/cshperspect.a040535 PMID: 33941515.
  • Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292(5516):504–7. doi: 10.1126/science.1058079 PMID: 11283355.
  • Tabata H. Crosstalk between blood vessels and glia during the central nervous system development. Life (Basel). 2022;12(11):1761. doi: 10.3390/life12111761 PMID: 36362915.
  • Qian X, Shen Q, Goderie SK, et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron. 2000;28(1):69–80. doi: 10.1016/S0896-6273(00)00086-6 PMID: 11086984.
  • Okano H, Temple S. Cell types to order: temporal specification of CNS stem cells. Curr Opin Neurobiol. 2009;19(2):112–119. doi: 10.1016/j.conb.2009.04.003 PMID: 19427192.
  • Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566–571. doi: 10.1038/s42255-020-0243-4 PMID: 32694798.
  • Mason S. Lactate shuttles in neuroenergetics-homeostasis, allostasis and beyond. Front Neurosci. 2017;11:43. doi: 10.3389/fnins.2017.00043 PMID: 28210209.
  • Díaz-García CM, Mongeon R, Lahmann C, et al. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 2017;26(2):361–374.e4. doi: 10.1016/j.cmet.2017.06.021 PMID: 28768175.
  • Yellen G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Bio. 2018;217(7):2235–2246. doi: 10.1083/jcb.201803152 PMID: 29752396.
  • Zheng X, Boyer L, Jin M, et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation eLife. 2016;5:e13374. doi: 10.7554/eLife.13374
  • Surin AM, Khiroug S, Gorbacheva LR, et al. Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures. Front Mol Neurosci. 2012;5:102. doi: 10.3389/fnmol.2012.00102 PMCID: PMC3541538.
  • Gallo G. The bioenergetics of neuronal morphogenesis and regeneration: frontiers beyond the mitochondrion. Dev Neurobiol. 2020;80(7–8):263–276. doi: 10.1002/dneu.22776 PMCID: PMC7749811.
  • Smith GM, Gallo G. The role of mitochondria in axon development and regeneration. Dev Neurobiol. 2018;78(3):221–237. doi:10.1002/dneu.22546 PMCID: PMC5816701.
  • Yang S, Hyun Park J, Lu H-C. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener. 2023;18(1):49. doi: 10.1186/s13024-023-00634-3; PMCID: PMC10357692.
  • Cheng X-T, Huang N, Sheng Z-H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron. 2022;110(12):1899–1923. doi: 10.1016/j.neuron.2022.03.015 PMCID: PMC9233091.
  • Ketschek A, Sainath R, Holland S, et al. The axonal glycolytic pathway contributes to sensory axon extension and growth cone dynamics. J Neurosci. 2021;41(31):6637–6651. doi: 10.1523/JNEUROSCI.0321-21.2021 PMCID: PMC8336710.
  • Santos R, Lokmane L, Ozdemir D, et al. Local glycolysis fuels actomyosin contraction during axonal retraction. Cell Biol. 2023;222(12):e202206133. doi: 10.1083/jcb.202206133 PMID: 37902728.
  • Zala D, Hinckelmann MV, Yu H, et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell. 2013;152(3):479–491. doi: 10.1016/j.cell.2012.12.029 PMID: 23374344.
  • Hinckelmann MV, Virlogeux A, Niehage C, et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat Commun. 2016;7(1):13233. doi: 10.1038/ncomms13233; PMID: 27775035.
  • Ashrafi G, Ryan TA. Glucose metabolism in nerve terminals. Curr Opin Neurobiol. 2017;45:156–161. doi: 10.1016/j.conb.2017.03.007 PMID: 28605677.
  • Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156(4):825–835. doi: 10.1016/j.cell.2013.12.042 PMID: 24529383.
  • Ashrafi G, Wu Z, Farrell RJ, et al. GLUT4 mobilization supports energetic demands of active synapses. Neuron. 2017;93(3):606–615.e3. doi: 10.1016/j.neuron.2016.12.020 PMID: 28111082.
  • Jang S, Nelson JC, Bend EG, et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron. 2016;90(2):278–291. doi: 10.1016/j.neuron.2016.03.011 PMID: 27068791.
  • Masters CJ, Reid S, Don M. Glycolysis–new concepts in an old pathway. Mol Cell Biochem. 1987;76(1):3–14. doi: 10.1007/BF00219393 PMID: 3306346.
  • Wang Z, Gardiner NJ, Fernyhough P. Blockade of hexokinase activity and binding to mitochondria inhibits neurite outgrowth in cultured adult rat sensory neurons. Neurosci Lett. 2008;434(1):6–11. doi: 10.1016/j.neulet.2008.01.057 PMID: 18308470.
  • Aghanoori MR, Margulets V, Smith DR, et al. Sensory neurons derived from diabetic rats exhibit deficits in functional glycolysis and ATP that are ameliorated by IGF-1. Mol Metab. 2021;49:101191. doi: 10.1016/j.molmet.2021.101191 PMID: 33592336.
  • Aghanoori MR, Agarwal P, Gauvin E, et al. CEBPβ regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth. Cell Mol Life Sci. 2022;79(4):193. doi: 10.1007/s00018-022-04201-9 PMID: 35298717.
  • Segarra-Mondejar M, Casellas-Díaz S, Ramiro-Pareta M, et al. Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth. Embo J. 2018;37(9):e97368. doi: 10.15252/embj.201797368 PMID: 29615453.
  • Costa AR, Sousa MM. Non-muscle Myosin II in axonal cell biology: from the growth cone to the axon initial segment. Cells. 2020;9(9):1961. doi: 10.3390/cells9091961 PMID: 32858875.
  • Gallo G. Myosin II activity is required for severing-induced axon retraction in vitro. Exp Neurol. 2004;189(1):112–121. doi: 10.1016/j.expneurol.2004.05.019 PMID: 15296841.
  • George EB, Schneider BF, Lasek RJ, et al. Axonal shortening and the mechanisms of axonal motility. Cell Motil Cytoskeleton. 1988;9(1):48–59. doi: 10.1002/cm.970090106 PMID: 2895686.
  • Holland SM, Gallo G. Actin cytoskeletal dynamics do not impose an energy drain on growth cone bioenergetics. J Cell Sci. 2023;136(16):jcs261356. doi: 10.1242/jcs.261356 PMID: 37534394.
  • Wei Y, Miao Q, Zhang Q, et al. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat Neurosci. 2023;26(12):2081–2089. doi: 10.1038/s41593-023-01476-4 PMID: 37996529.
  • Sainath R, Gallo G. Bioenergetic requirements and spatiotemporal profile of nerve growth factor induced PI3K-Akt signaling along sensory axons. Front Mol Neurosci. 2021;14:726331. doi: 10.3389/fnmol.2021.726331 PMID: 34630035.