289
Views
0
CrossRef citations to date
0
Altmetric
Research article

Phytochemical constituents analysis in laminaria digitata for Alzheimer’s disease: molecular docking and in-silico toxicity approach

, & ORCID Icon
Article: 2357346 | Received 09 Feb 2024, Accepted 06 May 2024, Published online: 22 May 2024

References

  • Association A. Alzheimer’s disease facts and figures. Alzheimer’s Dementia. 2023;19(4):1598–11. doi: 10.1002/alz.13016
  • Chen ZR, Huang JB, Yang SL, et al. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27(6):1–23. doi: 10.3390/molecules27061816
  • Cacabelos R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat. 2007;3(3):303–333. doi: 10.1038/nm1067
  • Son M, Park C, Rampogu S, et al. Discovery of novel acetylcholinesterase inhibitors as potential candidates for the treatment of Alzheimer’s disease. Int J Mol Sci. 2019;20:1000. doi: 10.3390/ijms20041000
  • Moreira J, Machado M, Dias-Teixeira M, et al. The neuroprotective effect of traditional Chinese medicinal plants—A critical review. Acta Pharm Sin B. 2023;13(8):3208–3237. doi: 10.1016/j.apsb.2023.06.009
  • Wang F, Wang F, Chen T. Secondary metabolites of Galactomyces geotrichum from Laminaria japonica ameliorate cognitive deficits and brain oxidative stress in D-galactose induced Alzheimer’s disease mouse model. Nat Prod Res. 2021;35(23):5323–5328. doi: 10.1080/14786419.2020.1753738
  • Austad SN, Ballinger S, Buford TW, et al. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease. Acta Pharm Sin B. 2022;12(2):511–531. doi: 10.1016/j.apsb.2021.06.014
  • Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer’s disease. Acta Pharm Sin B. 2022;12(2):483–495. doi: 10.1016/j.apsb.2021.11.003
  • Hannan MA, Dash R, Haque MN, et al. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar Drugs. 2020;18(7):347. doi: 10.3390/md18070347
  • El-Beltagi HS, Mohamed AA, Mohamed HI, et al. Phytochemical and potential properties of seaweeds and their recent applications: A review. Mar Drugs. 2022;20(6):342. doi: 10.3390/md20060342
  • Pakidi CS, Suwoyo HS. Potensi dan Pemanfaatan Bahan Aktif Alga Cokelat Sargassum Sp. Octopus. 2016;5(2):488–498. doi: 10.101/p.algae.2023.05.013
  • Venkatesan J, Keekan K, Anil S, et al. Phlorotannins. Elsevier. 2019:3. doi: 10.1016/B978-0-08-100596-5.22360-3
  • Torres PHM, Sodero ACR, Jofily P, et al. Key topics in molecular docking for drug design. Int J Mol Sci. 2019;20(18):1–29. doi: 10.3390/ijms20184574
  • Agu PC, Afiukwa CA, Orji OU, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):1–18. doi: 10.1038/s41598-023-40160-2
  • Singh V, Mujwar S, Singh M, et al. Computational studies to understand the neuroprotective mechanism of action basil compounds. Molecules. 2023;28(20):7005. doi: 10.3390/molecules28207005
  • Khasanah NU, Wardani GA, Mardianingrum R. Synthesis and computational study of Bis-(1-(3-Chlorobenzoyl)- 3-Phenylthiourea) cobalt (III) as anticancer candidate. J Kim Sains Apl. 2023;26(7):238–248. doi: 10.14710/jksa.26.7.238-248
  • Vissers AM, Caligiani A, Sforza S, et al. Phlorotannin composition of Laminaria digitata. Phytochemical Anal. 2017;28(6):487–495. doi: 10.1002/pca.2697
  • Park M, Baek SJ, Park SM, et al. Comparative study of the mechanism of natural compounds with similar structures using docking and transcriptome data for improving in silico herbal medicine experimentations. Brief Bioinform. 2023;24(6). doi: 10.1093/bib/bbad344
  • Zayed A, Al-Saedi DA, Mensah EO, et al. Fucoidan ’ s molecular targets: A comprehensive review of its unique and multiple targets accounting for promising bioactivities supported by in silico studies. Mar Drugs. 2024;22(1):29. doi: 10.3390/md22010029
  • Mohanty M, Mohanty PS. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Springer. 2023;154(7):683–707. doi: 10.1007/s00706-023-03076-1
  • Yasuda Y. Organic chemistry aromatic compounds: understanding the fragrant world of organic chemistry. 2023;6:43–45. doi: 10.37532/jmoc.2023.6(3).43-45
  • Lanzarotti E, Defelipe LA, Marti MA, et al. Aromatic clusters in protein-protein and protein-drug complexes. J Cheminform. 2020 May 8;12(1):30. doi: 10.1186/s13321-020-00437-4
  • Myung CS, Shin HC, Hai YB, et al. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch Pharm Res. 2005;28(6):691–698. doi: 10.1007/BF02969360
  • Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer′s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res. 2016;11(10):1579–1581. doi: 10.4103/1673-5374.193234
  • Marucci G, Buccioni M, Ben DD, et al. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021;190:108352. doi: 10.1016/j.neuropharm.2020.108352
  • Saǧlık BN, Osmaniye D, Çevik UA, et al. Design, synthesis, and structure–activity relationships of thiazole analogs as anticholinesterase agents for alzheimer’s disease. Molecules. 2020;25(18):4312. doi: 10.3390/molecules25184312
  • Lee J, Jun M. Dual BACE1 and cholinesterase inhibitory effects of phlorotannins from ecklonia cava-an in vitro and in silico study. Mar Drugs. 2019;17(2):1–15. doi: 10.3390/md17020091
  • Haider A, Inam W, Khan SA, et al. Β-glucan attenuated scopolamine induced cognitive impairment via hippocampal acetylcholinesterase inhibition in rats. Brain Res. 2016;1644:141–148. doi: 10.1016/j.brainres.2016.05.017
  • Subaraja M, Krishnan DA, Hillary VE, et al. Fucoidan serves a neuroprotective effect in an Alzheimer’s disease model. Front Biosci - Elite. 2020;12(1):1–34. doi: 10.2741/E855
  • Sang VT, Hung ND, Se-Kwon K. Pharmaceutical properties of marine polyphenols: An overview. Acta Pharm Sci. 2019;57(2):217–242. doi: 10.23893/1307-2080.APS.05714
  • Mateos R, Pérez-Correa JR, Domínguez H. Bioactive properties of marine phenolics. Mar Drugs. 2020;18(10):1–65. doi: 10.3390/md18100501
  • Chen WN, Tang KS, Yeong KY. Potential roles of α-amylase in Alzheimer’s disease: Biomarker and drug target. Curr Neuropharmacol. 2021;20(8):1554–1563. doi: 10.2174/1570159x20666211223124715
  • Moghadam B, Ashouri M, Roohi H, et al. Computational evidence of new putative allosteric sites in the acetylcholinesterase receptor. J Mol Graph Model. 2021;107:107981. doi: 10.1016/j.jmgm.2021.107981
  • Dhakal A, McKay C, Tanner JJ, et al. Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions. Brief Bioinform. 2022;23(1):1–23. doi: 10.1093/bib/bbab476
  • Ham Sembiring M, Nursanti O, Aisyah Rahmania T. Molecular docking and toxicity studies of nerve agents against acetylcholinesterase (AChE). J Recept Signal Transduction Res. 2023;43(5):115–122. doi: 10.1080/10799893.2023.2298899
  • Girgin M, Isik S, Kantarci-Carsibasi N, et al. Proposing novel natural compounds against Alzheimer’s disease targeting acetylcholinesterase. PLOS ONE. 2023;18(4):1–23. doi: 10.1371/journal.pone.0284994
  • Aatif M, Muteeb G, Alsultan A, et al. Dieckol and its derivatives as potential inhibitors of SARS-CoV-2 spike protein (UK strain: VUI 202012/01): a computational study. Mar Drugs. 2021;19(5):242. doi: 10.3390/md19050242
  • Rahman MM, Islam MR, Akash S, et al. In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Front Cell Infect Microbiol. 2022;12(August):1–28. doi: 10.3389/fcimb.2022.929430
  • Kang MC, Cha SH, Wijesinghe WA, et al. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo. Food Chem. 2013;138(2–3):950–955. doi: 10.1016/j.foodchem.2012.11.005
  • Yang H, Yun M-S, Kim J-Y, et al. Acute oral toxicity of Phlorotannins in beagle dogs. Korean Journal of Fisheries and Aquatic Sciences. 2014;47(4):356–362. doi: 10.5657/KFAS.2014.0356
  • Um MY, Kim JY, Han JK, et al. Phlorotannin supplement decreases wake after sleep onset in adults with self-reported sleep disturbance: a randomized, controlled, double-blind clinical and polysomnographic study. Phytother Res. 2018;32(4):698–704. doi:https://doi.org/10.1002/ptr.6019
  • Banerjee P, Eckert AO, Schrey AK, et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–W263. doi: 10.1093/nar/gky318
  • Gadaleta D, Vuković K, Toma C, et al. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J Cheminform. 2019;11(1):1–16. doi: 10.1186/s13321-019-0383-2
  • Heipieper HJ, Martínez PM. Toxicity of Hydrocarbons to Microorganisms. In: Krell T, editor. Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology. Cham: Springer; 2016. doi: 10.1007/978-3-319-20796-4_45-1
  • Benet LZ, Hosey CM, Ursu O, et al. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89–98. doi: 10.1016/j.addr.2016.05.007
  • Ezike TC, Okpala US, Onoja UL, et al. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9(6):e17488. doi: 10.1016/j.heliyon.2023.e17488
  • Manandhar S, Sankhe R, Priya K, et al. Molecular dynamics and structure-based virtual screening and identification of natural compounds as wnt signaling modulators: possible therapeutics for Alzheimer’s disease. Mol Divers. 2022;26(5):2793–2811. doi: 10.1007/s11030-022-10395-8