Publication Cover
Marine and Coastal Fisheries
Dynamics, Management, and Ecosystem Science
Volume 8, 2016 - Issue 1
1,708
Views
14
CrossRef citations to date
0
Altmetric
ARTICLE

Variability in Fish Tissue Proximate Composition is Consistent with Indirect Effects of Hypoxia in Chesapeake Bay Tributaries

&
Pages 1-15 | Received 16 Dec 2014, Accepted 24 Sep 2015, Published online: 07 Mar 2016

References

  • Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46.
  • ASMFC (Atlantic States Marine Fisheries Commission). 2010. Atlantic Croaker 2010 benchmark stock assessment. ASMFC, Washington, D.C.
  • Baird, D., R. R. Christian, C. H. Peterson, and G. A. Johnson. 2004. Consequences of hypoxia on estuarine function: energy diversion from consumers to microbes. Ecological Applications 14:805–822.
  • Barbieri, L. R., M. E. Chittenden Jr., and S. K. Lowerre-Barbieri. 1994. Maturity, spawning, and ovarian cycle of Atlantic Croaker, Micropogonias undulatus, in the Chesapeake Bay and adjacent coastal waters. U.S. National Marine Fisheries Service Fishery Bulletin 92:671–685.
  • Bell, G. W., and D. B. Eggleston. 2005. Species-specific avoidance responses by blue crabs and fish to chronic and episodic hypoxia. Marine Biology 1456:761–770.
  • Boesch, D. F., V. J. Coles, D. G. Kimmel, and W. D. Miller. 2007. Coastal dead zones and global climate change: ramifications of climate change for the Chesapeake Bay. Pages 57–70 in K. L. Ebi, G. A. Meehl, D. Bachelet, J. M. Lenihan, R. P. Neilson, R. R. Twilley, D. F. Boesch, V. J. Coles, D. G. Kimmel, and W. D. Miller, editors. Regional impacts of climate change: four case studies in the United States. Pew Center for Global Climate Change, Arlington, Virginia.
  • Breck, J. E. 2008. Enhancing bioenergetics models to account for dynamic changes in fish body composition and energy density. Transactions of the American Fisheries Society 137:340–356.
  • Breck, J. E. 2014. Body composition in fishes: body size matters. Aquaculture 433:40–49.
  • Brooks, S., C. R. Tyler, and J. P. Sumpter. 1997. Egg quality in fish: what makes a good egg? Reviews in Fish Biology and Fisheries 7:387–416.
  • Buchheister, A., C. F. Bonzek, J. Gartland, and R. J. Latour. 2013. Patterns and drivers of the demersal fish community of Chesapeake Bay. Marine Ecology Progress Series 481:161–180.
  • Buckel, J. A., D. O. Conover, N. D. Steinberg, and K. A. McKown. 1999. Impact of age-0 Bluefish (Pomatomus saltatrix) predation on age-0 fishes in the Hudson River estuary: evidence for density-dependent loss of juvenile Striped Bass (Morone saxatilis). Canadian Journal of Fisheries and Aquatic Sciences 56:275–287.
  • Busacker, G. P., I. R. Adelman, and E. M. Goolish. 1990. Growth. Pages 363–387 in C. B. Schreck and P. B. Moyle, editors. Methods for fish biology. American Fisheries Society, Bethesda, Maryland.
  • Cheek, A. O., C. A. Landry, S. L. Steele, and S. Manning. 2009. Diel hypoxia in marsh creeks impairs the reproductive capacity of estuarine fish populations. Marine Ecology Progress Series 392:211–221.
  • Chesapeake Bay Program. 2013. Tracking status of Chesapeake Bay’s summer “DEAD ZONE.” U.S. Environmental Protection Agency, Annapolis, Maryland.
  • Copeland, T., B. R. Murphy, and J. J. Ney. 2010. The effects of feeding history and environment on condition, body composition and growth of Bluegills Lepomis macrochirus. Journal of Fish Biology 76:538–555.
  • Craig, J. K. 2012. Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the northern Gulf of Mexico. Marine Ecology Progress Series 445:75–95.
  • Craig, J. K., and S. H. Bosman. 2013. Small spatial scale variation in fish assemblage structure in the vicinity of the northwestern Gulf of Mexico hypoxic zone. Estuaries and Coasts 36:268–285.
  • Craig, J. K., and L. B. Crowder. 2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic Croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294:79–94.
  • Craig, J. F., M. J. Kenley, and J. F. Talling. 1978. Comparative estimations of the energy content of fish tissue from bomb calorimetry, wet oxidation and proximate analysis. Freshwater Biology 8:585–590.
  • Davis, A. A., and C. R. Arnold. 1997. Response of Atlantic Croaker fingerlings to practical diet formulations with varying protein and energy contents. Journal of the World Aquaculture Society 28:241–248.
  • Diaz, R. J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–929.
  • Eby, L., and L. B. Crowder. 2002. Hypoxia-based habitat compression in the Neuse River estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences 59:952–965.
  • Gerow, K. G., R. C. Anderson-Sprecher, and W. A. Hubert. 2005. A new method to compute standard-weight equations that reduces length-related bias. North American Journal of Fisheries Management 25:1288–1300.
  • Haas, L. 1977. The effect of the spring–neap tidal cycle on the vertical salinity structure of the James, York, and Rappahannock rivers, Virginia, U.S.A. Estuarine, Coastal, and Marine Science 5:485–496.
  • Keller, A. A., V. Simon, F. Chan, W. W. Wakefield, M. E. Clarke, J. A. Barth, D. Kamikawa, and E. L. Fruh. 2010. Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the U.S. West Coast. Fisheries Oceanography 19:76–87.
  • Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith, and J. C. Stevenson. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303:1–29.
  • Keyl, F., and M. Wolff. 2008. Environmental variability and fisheries: what can models do? Reviews in Fish Biology and Fisheries 18:273–299.
  • Kuo, A. Y., and B. J. Neilson. 1987. Hypoxia and salinity in Virginia estuaries. Estuaries 10:277–283.
  • Long, W. C., and R. D. Seitz. 2008. Trophic interactions under stress: hypoxia enhances foraging in an estuarine food web. Marine Ecology Progress Series 362:59–68.
  • Long, W. C., and R. D. Seitz. 2009. Hypoxia in Chesapeake Bay tributaries: worsening effects on macrobenthic community structure in the York River. Estuaries and Coasts 32:287–297.
  • Ludsin, S. A., X. Zhang, S. B. Brandt, M. R. Roman, W. C. Boicourt, D. M. Mason, and M. Costantini. 2009. Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: implications for food web interactions and fish recruitment. Journal of Experimental Marine Biology and Ecology 381:S108–S120.
  • Marshall, C. T., N. A. Yaragina, Y. Lambert, and O. S. Kjesbu. 1999. Total lipid energy as a proxy for total egg production by fish stocks. Nature 402:288–290.
  • Marteinsdottir, G., and G. A. Begg. 2002. Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic Cod Gadus morhua. Marine Ecology Progress Series 235:235–256.
  • Miglarese, J. V., C. W. McMillan, and M. H. Shealy Jr. 1982. Seasonal abundance of Atlantic Croaker (Micropogonias undulatus) in relation to bottom salinity and temperature in South Carolina estuaries. Estuaries 5:216–223.
  • Murphy, C. A., K. A. Rose, M. S. Rahman, and P. Thomas. 2009. Testing and applying a fish vitellogenesis model to evaluate laboratory and field biomarkers of endocrine disruption in Atlantic Croaker (Micropogonias undulatus) exposed to hypoxia. Environmental Toxicology and Chemistry 28:1288–1303.
  • Najjar, R. G., C. R. Pyke, M. B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, M. R. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine and Coastal Shelf Science 86:1–20.
  • Nye, J. A., D. A. Loewensteiner, and T. J. Miller. 2010. Annual, seasonal, and regional variaibility in diet of Atlantic Croaker (Micropogonias undulatus) in Chesapeake Bay. Estuaries and Coasts 34:691–700.
  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, and H. Wagner. 2015. Vegan: community ecology package (R package version 2.2-1). Available: http://CRAN.R-project.org/package=vegan. ( January 2016).
  • Pecquerie, L., P. Petitigas, and S. A. L. M. Kooijman. 2009. Modeling fish growth and reproduction in the context of the dynamic energy budget theory to predict environmental impact on anchovy spawning duration. Journal of Sea Research 62:93–105.
  • Pihl, L., S. P. Baden, R. J. Diaz, and L. C. Schaffner. 1992. Hypoxia-induced structural changes in the diet of bottom feeding fish and Crustacea. Marine Biology 112:349–61.
  • Powers, S. P., C. H. Peterson, R. R. Christian, E. Sullivan, M. J. Powers, M. J. Bishop, and C. P. Buzzelli. 2005. Effects of eutrophication on bottom habitat and prey resources of demersal fishes. Marine Ecology Progress Series 302:233–243.
  • R Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  • Rahman, M. S., and P. Thomas. 2007. Molecular cloning, characterization and expression of two hypoxia-inducible factors (HIF-1α and HIF-2α) in a hypoxia-tolerant marine teleost, Atlantic Croaker (Micropogonias undulatus). Gene 396:273–282.
  • Schloesser, R. W. 2015. Condition of juvenile fishes in estuarine nursery areas: measuring performance and assessing temporal and spatial dynamics with multiple indices. Doctoral dissertation. Virginia Institute of Marine Science, College of William and Mary, Williamsburg.
  • Seitz, R. D., D. M. Dauer, R. J. Llansó, and W. C. Long. 2009. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology 381:S4–S12.
  • Spencer, P. D., and M. W. Dorn. 2013. Incorporation of weight-specific relative fecundity and maternal effects in larval survival into stock assessments. Fisheries Research 138:159–167.
  • Sturdivant, S. K., M. J. Brush, and R. J. Diaz. 2013. Modeling the effect of hypoxia on macrobenthos production in the lower Rappahannock River, Chesapeake Bay, USA. PLoS (Public Library of Science) ONE [online serial] 8(12):e84140.
  • Thomas, P., and S. Rahman. 2009. Biomarkers of hypoxia exposure and reproductive function in Atlantic Croaker: a review with some preliminary findings from the northern Gulf of Mexico hypoxic zone. Journal of Experimental Marine Biology and Ecology 381:S38–S50.
  • Thomas, P., and S. Rahman. 2012. Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic Croaker in the northern Gulf of Mexico hypoxic zone. Proceedings of the Royal Society Part B 1726:28–38.
  • Thomas, P., S. Rahman, J. A. Kummer, and S. Lawson. 2006. Reproductive endocrine dysfunction in Atlantic Croaker exposed to hypoxia. Marine and Environmental Research 62:S249–S252.
  • Trudel, M., S. Tucker, J. F. T. Morris, D. A. Higgs, and D. W. Welch. 2005. Indicators of energetic status in juvenile Coho Salmon and Chinook Salmon. North American Journal of Fisheries Management 25:374–390.
  • Tuckey, T. D., and M. C. Fabrizio. 2013. Influence of survey design on fish assemblages: implications from a study in Chesapeake Bay tributaries. Transactions of the American Fisheries Society 142:957–973.
  • Wu, R. S. 2002. Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin 45:35–45.
  • Wu, R. S., B. S. Zhou, D. J. Randall, N. Y. Woo, and P. K. Lam. 2003. Aquatic hypoxia is an endocrine disrupter and impairs fish reproduction. Environmental Science and Technology 37:1137–41.