48
Views
43
CrossRef citations to date
0
Altmetric
PHYSICS AND CHEMISTRY

Green Synthesis of Silver Nanoparticles Using Paederia foetida L. Leaf Extract and Assessment of Their Antimicrobial Activities

, , , , , , , , & show all
Pages 230-239 | Received 29 Feb 2012, Accepted 25 Apr 2012, Published online: 19 Feb 2013

REFERENCES

  • Joerger , R. , Klaus , T. and Granqvist , C. G. 2000 . Biologically produced silver-carbon composite materials for optically functional thin-film coatings . Adv. Mat. , 12 : 407 – 409 .
  • Magudapathy , P. , Gangopadhyay , P. , Panigrahi , B. K. , Nair , K. G. M. and Dhara , S. 2001 . Electrical transport studies of Ag nanoclusters embedded in glass matrix . Physica B , 299 : 142 – 146 .
  • Jana , N. R. , Sau , T. K. and Pal , T. 1999 . Growing small silver particle as redox catalyst . J. Phys. Chem. B , 103 : 115 – 121 .
  • Crooks , R. M. , Lemon , B. I. , Sun , L. , Yeung , L. K. and Zhao , M. 2001 . Dendrimer-encapsulated metals and semiconductors: Synthesis, characterization, and applications . Top. Curr. Chem. , 212 : 81 – 135 .
  • Frederix , F. , Friedt , J. M. , Choi , K. H. , Laureyn , W. , Campitelli , A. , Mondelaers , D. , Maes , G. and Borghs , G. 2003 . Biosensing based on light absorption of nanoscaled gold and silver particles . Anal. Chem. , 75 : 6894 – 6900 .
  • Wu , S. and Meng , S. 2005 . Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI. . Mat. Chem. Phys. , 89 : 423 – 427 .
  • Rai , M. , Yadav , A. and Gade , A. 2009 . Silver nanoparticles as a new generation of antimicrobials . Biotechnol. Adv , 27 : 76 – 83 .
  • Alivisatos , A. P. 1996 . Semiconductor clusters, nanocrystals, and quantum dots . Sci , 271 : 933 – 937 .
  • Coe , S. , Woo , W. K. , Bawendi , M. and Bulović , V. 2002 . Electroluminescence from single monolayers of nanocrystals in molecular organic devices . Nat , 420 : 800 – 803 .
  • Bruchez , M. , Moronne , M. , Gin , P. , Weiss , S. and Alivisatos , A. P. 1998 . Semiconductor nanocrystals as fluorescent biological labels . Sci , 281 : 2013 – 2016 .
  • Yu , D. G. 2007 . Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process . Colloids Surf. B , 59 : 171 – 178 .
  • Tan , Y. , Wang , Y. , Jiang , L. and Zhu , D. 2002 . Thiosalicylicacid-functionalized silver nanoparticles synthesized in one-phase system . J. Colloid Int. Sci. , 249 : 336 – 345 .
  • Petit , C. , Lixon , P. and Pileni , M. P. 1993 . In situ synthesis of silver nanocluster in AOT reverse micelles . J. Phy. Chem , 97 : 12974 – 12983 .
  • Vorobyova , S. A. , Lesnikovich , A. I. and Sobal , N. S. 1999 . Preparation of silver nanoparticles by interphase reduction . Colloids Surf. A , 152 : 375 – 379 .
  • Esumi , K. , Tano , T. , Torigoe , K. and Meguro , K. 1990 . Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents . Chem. Mat. , 2 : 564 – 567 .
  • Cai , M. , Chen , J. and Zhou , J. 2004 . Reduction and morphology of silver nanoparticles via liquid–liquid method . Appl. Surf. Sci. , 226 : 422 – 426 .
  • Chen , D. H. and Chen , Y. Y. 2002 . Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid . Mat. Res. Bull. , 37 : 801 – 810 .
  • Wang , H. , Qiao , X. , Chen , J. and Ding , S. 2005 . Preparation of silver nanoparticles by chemical reduction method . Colloids Surf. A , 256 : 111 – 115 .
  • Rodríguez-Sánchez , L. , Blanco , M. C. and López-Quintela , M. A. 2000 . Electrochemical synthesis of silver nanoparticles . J. Phys. Chem. B , 104 : 9683 – 9688 .
  • Zhu , J. , Liu , S. , Palchik , O. , Koltypin , Y. and Gedanken , A. 2000 . Shape-controlled synthesis of silver nanoparticles by pulse sonoelectro chemical methods . Langmuir , 16 : 6396 – 6399 .
  • Khanna , P. K. and Subbarao , V. V. V. S. 2003 . Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium . Materials Lett , 57 : 2242 – 2245 .
  • Shirtcliffe , N. , Nickel , U. and Schneider , S. 1999 . Reproducible preparation of silver sols with small particle size using borohydride reduction: For use as nuclei for preparation of larger particles . J. Colloid Interf. Sci. , 211 : 122 – 129 .
  • Tan , Y. , Jiang , L. , Li , Y. and Zhu , D. 2002 . One dimensional aggregates of silver nanoparticles induced by the stabilizer 2-mercaptobenzimidazole . J. Phys. Chem. B , 106 : 3131 – 3138 .
  • Zhang , Z. , Patel , R. C. , Kothari , R. , Johnson , C. P. , Friberg , S. E. and Aikens , P. A. 2000 . Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions . J. Phy. Chem. B , 104 : 1176 – 1182 .
  • Mandal , D. , Bolander , M. E. , Mukhopadhyay , D. , Sankar , G. and Mukherjee , P. 2006 . The use of microorganisms for the formation of metal nanoparticles and their application . Appl. Microbiol. Biotechnol. , 69 : 485 – 492 .
  • Basavaraja , S. , Balaji , S. D. , Lagashetty , A. , Rajasab , A. H. and Venkataraman , A. 2008 . Extracelluar biosynthesis of silver nanoparticles using the fungus Fusarium semitectum . Mater. Res. Bull. , 43 : 1164 – 1170 .
  • Vigneshwaran , N. , Ashtaputre , N. M. , Varadarajan , P. V. , Nachane , R. P. , Paralikar , K. M. and Balasubramanya , R. H. 2007 . Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus . Mater. Lett. , 61 : 1413 – 1418 .
  • Vigneshwaran , N. , Kathe , A. A. , Varadarajan , P. V. , Nachane , R. P. and Balsubramanya , R. H. 2006 . Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaetechrysosporium . Colloids Surf. B , 53 : 55 – 59 .
  • Shahverdi , A. R. , Minaeian , S. , Shahverdi , H. R. , Jamalifar , H. and Nohi , A. A. 2007 . Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach . Process Biochem , 42 : 919 – 923 .
  • Shahverdi , A. R. , Fakhimi , A. , Shahverdi , H. R. and Minaian , S. 2007 . Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli . Nanomed.: Nanotechnol. Biol. Med , 3 : 168 – 171 .
  • Saha , S. , Sarkar , J. , Chattopadhyay , D. , Patra , S. , Chakraborty , A. and Acharya , K. 2010 . Production of silver nanoparticles by a phytopathogenic fungus Bipolarisnodulosa and its antimicrobial activity . Digest J. Nanomat. Biostru. , 5 : 887 – 895 .
  • Mukherjee , P. , Ahmad , A. , Mandal , D. , Senapati , S. , Sainkar , S. R. , Khan , M. I. , Ramani , R. , Parischa , R. , Ajaykumar , P. V. , Alam , M. , Sastry , M. and Kumar , R. 2001 . Bioreduction of AuCl4 −ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed . Angew. Chem. Int. Ed , 40 : 3585 – 3588 .
  • Mukherjee , P. , Ahamd , A. , Mandal , D. , Senapati , S. , Sainkar , S. R. , Khan , M. I. , Ramani , R. , Parischa , R. , Ajaykumar , P. V. , Alam , M. , Kumar , R. and Sastry , M. 2001 . Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis . Nano Lett. , 1 : 515 – 519 .
  • Pal , A. , Esumi , K. and Pal , T. 2005 . Preparation of nanosized gold particles in a biopolymer using UV photo activation . J. Colloid Interf. Sci. , 288 : 396 – 401 .
  • Mohan , Y. M. , Raju , K. M. , Sambasivudu , K. , Singh , S. and Sreedhar , B. 2007 . Preparation of acacia-stabilized silver nanoparticles: A green approach . J. Appl. Poly. Sci. , 106 : 3375 – 3381 .
  • Vilchis-Nestor , A. R. , Sánchez-Mendieta , V. , Camacho-López , M. A. , Gómez-Espinosa , R. M. , Camacho-López , M. A. and Arenas-Alatorre , J. A. 2008 . Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract . Mat. Lett , 62 : 3103 – 3105 .
  • Shankar , S. S. , Rai , A. , Ahmad , A. and Sastry , M. 2004 . Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachtaindica) leaf broth . J. Colloid Interf. Sci. , 275 : 496 – 502 .
  • Abu Bakar , N. H. H. , Ismail , J. and Abu Bakar , M. 2007 . Synthesis and characterization of silver nanoparticles in natural rubber . Mat. Chem. Phy. , 104 : 276 – 283 .
  • Gardea-Torresdey , J. L. , Parsons , J. G. , Gomez , E. , Peralta-Videa , J. , Troiani , H. E. , Santiago , P. and Jose-Yacaman , M. 2002 . Formation and growth of Au nanoparticles inside live alfalfa plants . Nano Lett , 2 : 397 – 401 .
  • Chandran , S. P. , Chaudhary , M. , Pasricha , R. , Ahmad , A. and Sastry , M. 2006 . Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract . Biotechnol. Progress. , 22 : 577 – 583 .
  • Shankar , S. S. , Rai , A. , Ahmad , A. and Sastry , M. 2005 . Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings . Chem. Mat. , 17 : 566 – 572 .
  • Philip , D. 2010 . Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis . Physica E , 42 : 1417 – 1424 .
  • Parashar , V. , Parashar , R. , Sharma , B. and Pandey , A. C. 2009 . Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization . Digest J. Nanomat. Biostru. , 4 : 45 – 50 .
  • Ankamwar , B. , Chaudhary , M. and Sastry , M. 2005 . Gold nanotriangles biologically synthesized using Tamarind leaf extract and potential application in vapor sensing . Synth. React. Inorg. Metal-Org. Nano-Metal Chem. , 35 : 19 – 26 .
  • Kasthuri , J. , Veerapandian , S. and Rajendiran , N. 2009 . Biological synthesis of silver and gold nanoparticles using apiin as reducing agent . Colloids Surf. B , 68 : 55 – 60 .
  • Bhattacharya , R. and Mukherjee , P. 2008 . Biological properties of “naked” metal nanoparticles . Adv. Drug Deliv. Rev. , 60 : 1289 – 1306 .
  • Gardea-Torresdey , J. L. , Gomez , E. , Peralta-Videa , J. R. , Parsons , J. G. , Troiani , H. and Jose-Yacaman , M. 2003 . Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles . Langmuir , 19 : 1357 – 1361 .
  • Philip , D. and Unni , C. 2011 . Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf . Physica E , 43 : 1318 – 1322 .
  • Elumalai , E. K. , Prasad , T. N. V. K. V. , Hemachandran , J. , ViviyanTherasa , S. , Thirumalai , T. and David , E. 2010 . Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities . J. Pharm. Sci. Res , 2 : 549 – 554 .
  • Song , J. Y. and Kim , B. S. 2009 . Rapid biological synthesis of silver nanoparticles using plant leaf extracts . Bioprocess Biosyst. Eng. , 32 : 79 – 84 .
  • Morones , J. R. , Elechiguerra , J. L. , Camacho , A. , Holt , K. , Kouri , J. B. , Ramírez , J. P. and Yacaman , M. J. 2005 . The bactericidal effect of silver nanoparticles . Nanotechnol , 16 : 2346 – 2353 .
  • Lok , C. N. , Ho , C. M. , Chen , R. , He , Q. Y. , Yu , W. Y. , Sun , H. , Tam , P. K. H. , Chiu , J. F. and Che , C. M. 2007 . Silver nanoparticles: Partial oxidation and antibacterial activities . J. Biol. Inorg. Chem. , 12 : 527 – 534 .
  • Ip , M. , Lui , S. L. , Poon , V. K. M. , Lung , I. and Burd , A. 2006 . Antimicrobial activities of silver dressings: An in vitro comparison . J. Medical Microbiol. , 55 : 59 – 63 .
  • De , S. , Ravishankar , B. and Bhavsar , G. C. 1994 . Investigation of the anti-inflammatory effects of Paederiafoetida . J. Ethnopharmacol. , 43 : 31 – 38 .
  • Afroz , S. , Alamgir , M. , Khan , M. T. H. , Jabbar , S. , Nahar , N. and Choudhuri , M. S. K. 2006 . Antidiarrhoeal activity of the ethanol extract of Paederia foetida Linn. (Rubiaceae) . J. Ethnopharmacol. , 105 : 125 – 130 .
  • Nosáľová , G. , Mokrý , J. , Ather , A. and Khan , M. T. H. 2007 . Antitussive activity of the ethanolicextract of Paederia foetida (Rubiaceae family) in non-anaesthetized cats . Acta Vet. Brno. , 76 : 27 – 33 .
  • Shukla , Y. N. , Lloyd , H. A. , Morton , J. F. and Kapadia , G. J. 1976 . Iridoid glycosides and other constituents of Paederia foetida . Phytochem , 15 : 1989 – 1990 .
  • Ramirez-Aguilar , K. A. and Rowlen , K. L. 1998 . Tip characterization from AFM images of nanometric spherical particles . Langmuir , 14 : 2562 – 2566 .
  • Markiewicz , P. and Goh , M. C. 1994 . Atomic force microscopy probe tip visualization and improvement of images using a simple deconvolution procedure . Langmuir , 10 : 5 – 7 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.