188
Views
44
CrossRef citations to date
0
Altmetric
Articles

Supported Co3O4 on expanded graphite as a catalyst for the degradation of Orange II in water using sulfate radicals

, , , &
Pages 3384-3391 | Received 07 Mar 2013, Accepted 11 Apr 2013, Published online: 31 May 2013

References

  • G.P. Anipsitakis, D.D. Dionysiou, Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 37 (2003) 4790–4797.
  • G.P. Anipsitakis, D.D. Dionysiou, Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal. B 54 (2004) 155–163.
  • G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38 (2004) 3705–3712.
  • Q.J. Yang, H. Choi, Y.J. Chen, D.D. Dionysiou, Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: The effect of support, cobalt precursor, and UV radiation. Appl. Catal. B 77 (2008) 300–307.
  • Q.J. Yang, H. Choi, D.D. Dionysiou, Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal. B 74 (2007) 170–178.
  • G.P. Anipsitakis, E. Stathatos, D.D. Dionysiou, Heterogeneous activation of oxone using Co3O4. J. Phys. Chem. B 109 (2005) 13052–13055.
  • P. Raja, M. Bensimon, U. Klehm, P. Albers, D. Laub, L. Kiwi-Minsker, A. Renken, J. Kiwi, Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation. J. Photochem. Photobiol. A 187 (2007) 332–338.
  • X.Y. Chen, J.W. Chen, X.L. Qiao, D.G. Wang, X.Y. Cai, Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using acid Orange 7 as a model compound. Appl. Catal. B 80 (2008) 116–121.
  • W. Zhang, H.L. Tay, S.S. Lim, Y.S. Wang, Z.Y. Zhong, R. Xu, Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B 95 (2010) 93–99.
  • P. Shukla, S.B. Wang, K. Singh, H.M. Ang, M.O. Tadé, Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B 99 (2010) 163–169.
  • W. Li, C. Han, W. Liu, M.H. Zhang, K.Y. Tao, Expanded graphite applied in the catalytic process as a catalyst support. Catal. Today 125 (2007) 278–281.
  • R.R. Francisco, The role of carbon materials in heterogeneous catalysis. Carbon 36 (1998) 159–175.
  • Z.G. Zhang, N. Zhang, J. Peng, X.M. Fang, X.N. Gao, Y.T. Fang, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl. Energy 91 (2012) 426–431.
  • P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 253 (2003) 337–358.
  • J.M. Nhut, L. Pesant, J.P. Tessonnier, G. Winé, J. Guille, P.H. Cuong, M.J. Ledoux, Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Appl. Catal. A 254 (2003) 345–363.
  • Y. Kong, X.H. Chen, J.H. Ni, S.P. Yao, W.C. Wang, Z.Y. Luo, Z.D. Chen, Palygorskite—expanded graphite electrodes for catalytic electro-oxidation of phenol. Appl. Clay Sci. 49 (2010) 64–68.
  • J.G. Zhao, Y. Guo, F. Feng, Q.H. Tong, W.S. Qv, H.Q. Wang, Microstructure and thermal properties of a paraffin/expanded graphite phase-change composite for thermal storage. Renewable Energy 36 (2011) 1339–1342.
  • Y.L. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, T.G. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem. Eng. J. 193–194 (2012) 203–210.
  • C.J. Madadrang, H.Y. Kim, G.H. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S.F. Hou, Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. Appl. Mater. Interfaces 4 (2012) 1186–1193.
  • A.R. Marlinda, N.M. Huang, M.R. Muhamad, M.N. Anamt, B.Y.S. Chang, N. Yusoff, I. Harrison, H.N. Lim, C.H. Chia, S.V. Kumar, Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett. 80 (2012) 9–12.
  • B. Kılıc, S. Sencanlı, Ö. Metin, Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: High activity and detailed reaction kinetics. J. Mol. Catal. A: Chem. 361–362 (2012) 104–110.
  • L.L. Fan, C.N. Luo, M. Sun, X.J. Li, F.G. Lu, H.M. Qiu, Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour. Technol. 114 (2012) 703–706.
  • J.F. Wang, T. Tsuzuki, B. Tang, X.L. Hou, L. Sun, X.G. Wang, Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces 4 (2012) 3084–3090.
  • Y.Q. Sun, Q. Wu, G.Q. Shi, Graphene based new energy materials. Energy Environ. Sci. 4 (2011) 1113–1132.
  • P. Shukla, S.B. Wang, H.Q. Sun, H.M. Ang, M.O. Tadé, Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B 100 (2010) 529–534.
  • Y. Hardjono, H.Q. Sun, H.Y. Tian, C.E. Buckley, S.B. Wang, Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chem. Eng. J. 174 (2011) 376–382.
  • H.Q. Sun, S.Z. Liu, G.L. Zhou, H.M. Ang, M.O. Tadé, S.B. Wang, Metal-free graphene catalyzed activation of peroxymonosulfate (PMS) for green remediation of water. ACS Appl. Mater. Interface 4 (2012) 5466–5471.
  • Y.J. Yao, Z.H. Yang, H.Q. Sun, S.B. Wang, Hydrothermal synthesis of Co3O4–graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Ind. Eng. Chem. Res. 51 (2012) 14958–14965.
  • Y. Kong, Y.Y. Xu, H.H. Mao, C. Yao, X.F. Ding, Expanded graphite modified with intercalated montmorillonite for the electrochemical determination of catechol. J. Electroanal. Chem. 669 (2012) 1–5.
  • G.L. Wang, Q.R. Sun, Y.Q. Zhang, J.H. Fan, L.M. Ma, Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263 (2010) 183–188.
  • A.S. Tikhomirov, N.E. Sorokina, O.N. Shornikova, V.A. Morozov, G. Van Tendeloo, V.V. Avdeev, The chemical vapor infiltration of exfoliated graphite to produce carbon/carbon composites. Carbon 49 (2011) 147–153.
  • J. Kiwi, M.R. Dhananjeyan, J. Albers, O. Enea, Photo-assisted immobilized Fenton degradation up to pH8 of azo dye Orange II mediated by Fe3+/nafion/glass fibers. Helv. Chim. Acta 84 (2001) 3433–3445.
  • J.H. Ramirez, F.J. Maldonado-Hodar, A.F. Perez-Cadenas, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon–Fe catalysts. Appl. Catal. B 75 (2007) 312–323.
  • J.H. Ramirez, C.A. Costa, L.M. Madeira, Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton’s reagent. Catal. Today 107–108 (2005) 68–76.
  • J.H. Ramirez, C.A. Costa, L.M. Madeira, G. Mata, M.A. Vicente, M.L. Rojas-Cervantes, A.J. Lo pez-Peinado, R.M. Martın-Aranda, Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl. Catal. B 71 (2007) 44–56.
  • J.H. Ramirez, F.M. Duarte, F.G. Martins, C.A. Costa, L.M. Madeira, Modelling of the synthetic dye Orange II degradation using Fenton’s reagent: From batch to continuous reactor operation. Chem. Eng. J. 148 (2009) 394–404.
  • A.M.T. Silva, J.H. Ramirez, U. Söylemez, L.M. Madeira, A lumped kinetic model based on the Fermi’s equation applied to the catalytic wet hydrogen peroxide oxidation of acid Orange 7. Appl. Catal. B 121–122 (2012) 10–19.
  • J.H. Ramirez, A.M.T. Silva, M.A. Vicente, C.A. Costa, L.M. Madeira, Degradation of acid Orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi’s equation. Appl. Catal. B 101 (2011) 197–205.
  • M. Kousha, E. Daneshvar, M.S. Sohrabi, M. Jokar, A. Bhatnagar, Adsorption of acid Orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chem. Eng. J. 192 (2012) 67–76.
  • S. Mandal, V.S. Patil, S. Mayadevi, Alginate and hydrotalcite-like anionic clay composite systems: Synthesis, characterization and application studies. Microporous Mesoporous Mater. 158 (2012) 241–246.
  • N. Riaz, N. Chong, B.K. Dutta, Z.B. Man, M.S. Khan, E. Nurlaela, Photodegradation of Orange II under visible light using Cu–Ni/TiO2: Effect of calcination temperature. Chem. Eng. J. 185–186 (2012) 108–119.
  • X.L. Liang, Y.H. Zhong, H.P. He, P. Yuan, J.X. Zhu, S.Y. Zhu, Z. Jiang, The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 191 (2012) 177–184.
  • T. He, D.R. Chen, X.L. Jiao, Controlled synthesis of Co3O4 nanoparticles through oriented aggregation. Chem. Mater. 16 (2004) 737–743.
  • F. Tuinstra, J.L. Koening, Raman spectrum of graphite. J. Chem. Phys. 53 (1970) 1126–1130.
  • C. Wang, L. Zhan, W.M. Qiao, L.C. Ling, Preparation of graphene nanosheets through detonation. New Carbon Mater. 26 (2011) 21–25.
  • M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10 (2010) 751–758.
  • W.X. Zhang, J.C. Cui, C.A. Tao, Y.G. Wu, Z.P. Li, L. Ma, Y.Q. Wen, G.T. Li, A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem. Int. Ed. 48 (2009) 5864–5868.
  • J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3 (2009) 2367–2375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.