43
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of liquid phase physicochemical characteristics on hydrodynamics of an electroflotation column

, &
Pages 3347-3354 | Received 20 Jun 2012, Accepted 22 Apr 2013, Published online: 08 Jun 2013

References

  • F.P. Shariati, B. Bonakdarpour, M.R. Mehrnia, Hydrodynamics and oxygen transfer behaviour of water in diesel microemulsions in a draft tube airlift bioreactor. Chem. Eng. Process 46 (2007) 334–342.
  • D. Ghernaouta, M.W. Naceura, B. Ghernaoutb, A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation. Desalin. Water Treat. 28 (2011) 287–320.
  • L. Ben Mansour, Y. Ben Abdou, S. Gabsi, Effects of some parameters on removal process of nickel by electroflotation. Water Waste Environ. Res. 2 (2001) 51–58.
  • L. Ben Mansour, I. Kesentini, Treatment of effluents from cardboard industry by coagulation-electroflotation. J. Hazard. Mater. 153 (2008) 1067–1070.
  • I. Ksentini, M.L. Aouadi, H. Ben Bacha, L. Ben Mansour, Solar energy integration in the treatment of industrial effluent by coagulation–electroflotation. Desalin. Water Treat. 20 (2010) 60–65.
  • A.Y. Hosny, Separation of oil from oil/water emulsions using an electroflotation cell with insoluble electrodes. Filtr. Sep. J. 29 (5) (1992) 419–423.
  • V.A. Kolesnikov, S.O. Varaksin, V.I. Ilyin, An electroflotation method for purifying effluents from ions of metals and organic pollutants and its equipment. Russ. Chem. Ind. 26 (1994) 38–46.
  • M. Murugananthan, G. Bhaskar Raju, S. Prabhakar, Separation of pollutants from tannery effluents by electroflotation. Sep. Purif. Technol. 40 (2004) 69–75.
  • Y. Fukui, S. Yuu, Removal of colloidal particles in electroflotation. AIChE J. 31 (2) (1985) 201–208.
  • G. Chen, Electrochemical technologies in waste water treatment. Sep. Purif. Technol. 38 (2004) 11–41.
  • L.Z. Pino, M.M. Yepez, A.E. Saez, An experimental study of gas holdup in two-phase bubble columns with foaming liquids. Chem. Eng. Commun. 89 (1990) 155–157.
  • Y.T. Shah, S. Joseph, D.N. Smith, J.A. Ruether, On the behavior of the gas phase in a bubble column with ethanol–water mixtures. Ind. Eng. Chem. Process 24 (4) (1985) 1140–1148.
  • R. Pohoreski, W. Moniuk, Zdrojkowski, Hydrodynamics of a bubble column under elevated pressure. Chem. Eng. Sci. 54 (1999) 5187–5193.
  • K. Idogawa, K. Ikeda, F. Fukuda, S. Morooka, Behaviour of bubbles of the air–water system in a column under high pressure. Int. Chem. Eng. 26 (1986) 468–474.
  • T.J. Lin, K. Tsushiya, L.S. Fan, Bubble flow characteristics in bubble columns at elevated pressure and temperature. AIChE. J. 44 (1998) 545–560.
  • L. Ben Mansour, S. Chalbi, I. Kesentini, Experimental study of hydrodynamic and bubble size distributions in electroflotation process. Ind. J. Chem. Tech. 14 (2007) 253–257.
  • R. Schafer, C. Merten, G. Eigenberger, Bubble size distributions in a bubble column reactor under industrial conditions. Exp. Therm. Fluid Sci. 26 (2002) 595–604.
  • D. Lumanauw, Hydrogen bubble characterization in alkaline water electrolysis. MSc thesis, Department of Metallurgy and Materials Science, University of Toronto, Canada, 2000.
  • S.E. Burns, S. Yiacoumi, C. Tsouris, Microbubble generation for environmental and industrial separations. Sep. Purif. Technol. 11 (3) (1997) 221–232.
  • L.J.J. Janssen, J.G. Hoogland, The effect of electrolytically evolved gas bubbles on the thcikness of the diffusion layer. Electrochim. Acta 15 (1970) 1013–1023.
  • D.R. Ketkar, R. Mallikarjunan, S. Venkatachalam, Size determination of electrogenerated gas bubbles. J. Electrochem. Soc. India 37 (4) (1988) 313–318.
  • M. Fukuma, K. Muroyama, S. Morooka, Properties of bubble swarm in a slurry bubble column. J. Chem. Eng. Jpn. 20 (1987) 28–33.
  • S.C. Saxena, N.S. Rao, A.C. Saxena, Heat-transfer and gas-holdup studies in a bubble column: Air–water–glass bead system. Chem. Eng. Commun. 96 (1990) 31–55.
  • K. Akita, F. Yoshida, Bubble size interfacial area, and liquid-phase mass transfer coefficient in bubble columns. Ind. Eng. Chem. Process Des. Dev. 13 (1) (1974) 84–91.
  • R. Maceiras, E. Álvarez, M.A. Cancela, Experimental interfacial area measurements in a bubble column. Chem. Eng. J. 163 (3) (2010) 331–336.
  • I.G. Reilly, D.S. de Scott, T.J.W. Bruijn, A. Jain, J. Piskorz, A correlation for gas holdup in turbulent coalescing bubble columns. Can. J. Chem. Eng. 64 (1986) 705–717.
  • Pisut Painmanakul, Analyse locale du transfert de matière associé à la formation de bulles générées par différents types d’orifices dans différentes phases liquides Newtoniennes: étude expérimentale et modélisation [Local analysis of mass transfer associated with the formation of bubbles generated by different types of orifices in different Newtonian liquid phases: Experimental study and modeling], PhD thesis, INSA de TOULOUSE, 2005.
  • A.A. Kendoush, T.J. Mohammed, B.A. Abid, M.S. Hameed, Experimental investigation of the hydrodynamic interaction in bubbly two-phase flow. Chem. Eng. Process 43 (2004) 23–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.