122
Views
5
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic effect of β-cyclodextrin on semiconductors for the removal of Acid Violet dye under UV light irradiation

, , &
Pages 3432-3444 | Received 09 Jan 2013, Accepted 21 Apr 2013, Published online: 28 Jun 2013

References

  • M.C. Neves, J.M.F. Nogueira, T. Trindade, M.H. Mendonca, M.I. Pereira, O.C. Monteiro, Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. J. Photochem. Photobiol. A: Chem. 204 (2009) 168–173.
  • A.P. Toor, A. Verma, C.K. Jotshi, J.P. Bajbai, V. Singh, Photocatalytic degradationof 3,4-dichlorophenol using TiO2 in a shallow pond slurry reactor. Ind. J. Chem. Technol. 12 (2005) 75–81.
  • G.M. Madhu, M.A. Lourdu Antony Raj, K. Vasantha Kumar Pai, S. Rao, Photodegradation of methylene blue using UV/BaTiO3, UV/H2O2 and UV/H2O2/BaTiO3 oxidation processes, Ind. J. Chem. Technol. 14 (2007) 139–144.
  • A.C. Lee, R.H. Lin, C.Y. Yang, M.H. Lin, W.Y. Wang, Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method. Mater. Chem. Phys. 109 (2008) 275–280.
  • M.T. Sulak, H.C. Yatmaz, Removal of textile dyes from aqueous solutions with eco-friendly biosorbent. Desalin. Water Treat. 37 (2012) 169–177.
  • J.Z. Kong, A.D. Li, X.Y. Li, H.F. Zhai, W.Q. Zhang, Y.P. Gong, H. Li, D. Wu, Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J. Solid State Chem. 183 (2010) 1359–1364.
  • M.C. Yeber, J. Roderiguez, J. Freer, J. Baeza, N. Duran, H.D. Mansilla, Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39 (1999) 1679–1688.
  • M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, J. Hazard. Mater. B 133 (2006) 226–232.
  • K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 21 (2009) 2233–2239.
  • T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−irradiation. J. Am. Chem. Soc. 127 (2005) 3928–3934.
  • D. Kannaiyan, E. Kim, N. Won, K.W. Kim, Y.H. Jang, M.A. Cha, D.Y. Ryu, S. Kim, D.H. Kim, On the synergistic coupling properties of composite CdS/TiO2 nanoparticle arrays confined in nanopatterned hybrid thin films. J. Mater. Chem. 20 (2010) 677–682.
  • S.H. Liu, L.X. Yang, S.H. Xu, S.L. Luo, Q.Y. Cai, Photocatalytic activities of C–N-doped TiO2 nanotube array/carbon nanorod composite. Electrochem. Commun. 11 (2009) 1748–1751.
  • S. Fukuzumi, T. Kojima, Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors. J. Mater. Chem. 18 (2008) 1427–1439.
  • Q.P. Luo, X. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116 (2012) 8111–8117.
  • X. Chen, S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 107 (2007) 2891–2959.
  • T. Tachikawa, S. Tojo, M. Fujitsuka, T. Majima, One-electron oxidation pathways during β-cyclodextrin-modified TiO2 photocatalytic reactions. Chem. Eur. J. 12 (2006) 7585–7594.
  • S. Anandan, M. Yoon, Photocatalytic degradation of Nile red using TiO2–β cyclodextrin colloids. Catal. Commun. 5 (2004) 271–275.
  • P. Lu, F. Wu, N. Deng, Enhancement of TiO2 photocatalytic redox ability by β-cyclodextrin in suspended solutions. Appl. Catal. B: Environ. 53 (2004) 87–93.
  • I. Willner, Y. Eichen, TiO2 and CdS colloids stabilized by β-cyclodextrins: Tailored semiconductor–receptor systems as a means to control interfacial electron-transfer processes. J. Am. Chem. Soc. 109 (1987) 6862–6863.
  • I. Willner, Y. Eichen, A.J. Frank, Tailored semiconductor–receptor colloids: Improved photosensitized H2 evolution from water with TiO2–β-cyclodextrin colloids. J. Am. Chem. Soc. 111 (1989) 1884–1886.
  • I. Willner, Y. Eichen, B. Willner, Supramolecular semiconductor receptor assemblies: Improved electron transfer at TiO2–β-cyclodextrin colloid interfaces. Res. Chem. Inter. 20 (1994) 681–700.
  • N.M. Dimitrijevic, Z.V. Saponjic, D.M. Bartels, M.C. Thurnauer, D.M. Tiede, T. Rajhv, Revealing the nature of trapping sites in nanocrystalline titanium dioxide by selective surface modification. J. Phys. Chem. B 107 (2003) 7368–7375.
  • T. Sano, E. Puzenat, C. Guillard, C. Geantet, S. Matsuzawa, Degradation of C2H2 with modified-TiO2 photocatalysts under visible light irradiation. J. Mol. Catal. A 284 (2008) 127–133.
  • Y.S. Ma, C.N. Chang, Y.P. Chiang, H.F. Sung, A.C. Chao, Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst. Chemosphere 71 (2008) 998–1004.
  • D. Jiang, Y. Xu, D. Wu, Y. Sun, Visible-light responsive dye-modified TiO2 photocatalyst. J. Solid State Chem. 181 (2008) 593–602.
  • Y. Arai, K. Tanaka, A.L. Khlaifat, Photocatalysis of SiO2-loaded TiO2. J. Mol. Catal. A 243 (2006) 85–88.
  • R. Qiu, D. Zhang, Y. Mo, L. Song, E. Brewer, X. Huang, Y. Xiong, Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard. Mater. B 156 (2008) 80–85.
  • J.Z. Kong, A.D. Li, X.Y. Li, H.F. Zhai, W.Q. Zhang, Y.P. Gong, H. Li, D. Wu, Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle, J. Solid State Chem. 183 (2011) 1359–1364.
  • B. Li, Y. Wang, Synthesis, microstructure, and photocatalysis of ZnO/CdS nano-heterostructure. J. Phys. Chem. Solids 72 (2011) 1165–1169.
  • N.M. Dimitrijevic, T. Rajh, Z.V. Saponjic, L. de la Garza, D.M. Tiede, Light-induced charge separation and redox chemistry at the surface of TiO2/host-guest hybrid nanoparticles. J. Phys. Chem. B 108 (2004) 9105–9110.
  • J. Feng, A. Miedaner, P. Ahrenkiel, M.E. Himmel, C. Curtis, D. Ginley, Self-assembly of photoactive TiO2-cyclodextrin wires, J. Am. Chem. Soc. 12 (2005) 14968–14969.
  • P. Velusamy, S. Rajalakshmi, S. Pitchaimuthu, N. Kannan, Photodecolouration of organic dyes on β-cyclodextrin modified ZnO as catalyst. Ind. J. Environ. Protect. 31 (2011) 801–809.
  • P. Velusamy, S. Pitchaimuthu, S. Rajalakshmi, N. Kannan, Modification of the photocatalytic activity of TiO2 by β-cyclodextrin in decoloration of ethyl violet dye, J. Adv. Res. accepted manuscript.
  • K. Pitchumani, P. Velusamy, C. Srinivasan, Selectivity in sodium borohydride reduction of coumarin encapsulated in β-cyclodextrin. Tetrahedron 50 (1994) 12979–12988.
  • P. Velusamy, Study of Thermal and Photochemical Reactions in Cyclodextrin, Ph.D. Thesis submitted to Madurai Kamaraj University, Madurai, May 1998, p. 50.
  • E. Guivarch, S. Trevin, C. Lahitte, M.A. Oturan, Degradation of azo dyes in water by electro-Fenton process. Environ. Chem. Lett. 1 (2003) 38–44.
  • R. Velmurugan, M. Swaminathan, An efficient nano structured ZnO for dye sensitized degradation of Reactive Red 120 dye under solarlight. Sol. Energy Mater. Sol. Cell 95 (2011) 942–950.
  • G. Wang, F. Wu, X. Zhang, M. Luo, N. Deng, Enhanced photodegradation of bisphenol A in the presence of β-cyclodextrin under UV light. J. Chem. Technol. Biotechnol. 81 (2006) 805–811.
  • K. Pitchumani, P. Velusamy, H. Shayira Banu, C. Srinivasan, A novel photorearrangement of benzyl sulfone encapsulated in β-cyclodextrin. Tetrahedron Lett. 36 (1995) 1149–1152.
  • M. Chen, G. Diao, E. Zhang, Study of inclusion complex of β-cyclodextrin and nitrobenzene. Chemosphere 63 (2006) 522–529.
  • G.L. Puma, P.L. Yue, A laminar falling Þlm slurry photocatalytic reactor. Part II experimental validation of the model. Chem. Eng. Sci. 53 (1998) 3007–3021.
  • G.L. Puma, P.L. Yue, A novel fountain photocatalytic reactor: Model development and experimental validation. Chem. Eng. Sci. 56 (2001) 2733–2744.
  • M.A. Salem, A.F. Al-Ghonemiy, A.B. Zaki, Photocatalytic degradation of Allura red and Quinoline yellow with Polyaniline/TiO2 nanocomposite. Appl. Catal. B: Environ. 91 (2009) 59–66.
  • S.K. Kansal, M. Singh, D. Sud, Studies on TiO2/ZnO photocatalysed degradation of lignin. J. Hazard. Mater. 153 (2008) 412–417.
  • I. Muthuvel, M. Swaminathan, Highly solar active Fe (III) immobilised alumina for the degradation of Acid Violet 7. Sol. Energy Mater. Sol. Cell 92 (2008) 857–863.
  • S. Irmak, E. Kusvuran, O. Erbatur, Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Appl. Catal. B: Environ. 54 (2004) 85–91.
  • S.X. Li, S.J. Cai, F.Y. Zheng, Self assembled TiO2 with 5-sulfosalicylic acid for improvement its surface properties and photodegradation activity of dye. Dyes Pigments 95 (2012) 188–193.
  • N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep. Purif. Technol. 56 (2007) 101–107.
  • C. Karunakaran, P. Anilkumar, Photooxidation of iodide ion on immobilized semiconductor powders. Sol. Energy Mater. Sol. Cell 92 (2008) 490–494.
  • J. Fernandez, J. Kiwi, C. Lizama, J. Freer, J. Baeza, H.D. Mansilla, Factorial experimental design of Orange II photocatalytic discolouration. J. Photochem. Photobiol. A: Chem. 151 (2002) 213–219.
  • O.E. Kartal, M. Erol, H. Oguz, Photocatalytic destruction of phenol by TiO2 powders. Chem. Eng. Technol. 24 (2001) 6.
  • Y. Chen, Z. Sun, Y. Yang, Q. Ke, Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water. J. Photochem. Photobiol. A: Chem. 142 (2001) 85–89.
  • M.R. Sohrabi, M. Ghavami, Comparison of Direct Yellow 12 dye degradation efficiency using UV/semiconductor and UV/H2O2/semiconductor systems. Desalination 252 (2010) 157–162.
  • M. Muruganandham, M. Swaminathan, Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2–UV process. Dyes Pigments 68 (2006) 133–142.
  • S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cell 77 (2003) 65–82.
  • W. Dong, C.W. Lee, X. Lu, Y. Sun, W. Hua, G. Zhuang, S. Zhang, J. Chen, H. Hou, D. Zhao, Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Appl. Catal. B: Environ. 95 (2010) 197–207.
  • X. Zhang, F. Wu, N. Deng, Efficient photodegradation of dyes using light-induced self assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation. J. Hazard. Mater. B 185 (2011) 117–123.
  • M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95 (1995) 69–96.
  • D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46 (2011) 3669–3686.
  • G. Wang, F. Wu, X. Zhang, M. Luo, N. Deng, Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. J. Hazard. Mater. B 133 (2006) 85–91.
  • G. Wang, F. Wu, X. Zhang, M. Luo, N. Deng, Enhanced TiO2 photocatalytic degradation of bisphenol A by β-cyclodextrin in suspended solutions. J. Photochem. Photobiol. A: Chem. 179 (2006) 49–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.