347
Views
7
CrossRef citations to date
0
Altmetric
Articles

Probabilistic abstract argumentation: an investigation with Boltzmann machines

, , &
Pages 178-218 | Received 24 Jun 2015, Accepted 08 Oct 2015, Published online: 17 Dec 2015

References

  • Ackley D. H., Hinton G. E., & Sejnowski T. J. (1985). A learning algorithm for Boltzmann machines*. Cognitive Science, 9, 147–169. doi: 10.1207/s15516709cog0901_7
  • Baroni P., Caminada M., & Giacomin M. (2011). An introduction to argumentation semantics. Knowledge Engineering Review, 26, 365–410. doi: 10.1017/S0269888911000166
  • Baroni P., Giacomin M., & Vicig P. (2014). On rationality conditions for epistemic probabilities in abstract argumentation. Proceedings of computational models of argument: Vol. 266. Frontiers in artificial intelligence and applications (pp. 121–132). IOS Press.
  • Bondarenko A., Dung P. M., Kowalski R. A., & Toni F. (1997). An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93, 63–101. doi: 10.1016/S0004-3702(97)00015-5
  • Cayrol C., & Lagasquie-Schiex M.-C. (2013). Bipolarity in argumentation graphs: towards a better understanding. International Journal of Approximate Reasoning, 54, 876–899. doi: 10.1016/j.ijar.2013.03.001
  • d'Avila Garcez A. S., Gabbay D. M., & Lamb L. C. (2005). Value-based argumentation frameworks as neural-symbolic learning systems. Journal of Logic and Computation, 15, 1041–1058. doi: 10.1093/logcom/exi057
  • d'Avila Garcez A. S., Gabbay D. M., & Lamb L. C. (2014). A neural cognitive model of argumentation with application to legal inference and decision making. Journal of Applied Logic, 12, 109–127. doi: 10.1016/j.jal.2013.08.004
  • d'Avila Garcez A. S., Lamb L., & Gabbay D. (2008). Neural-symbolic cognitive reasoning (1st ed.). Springer.
  • De Finetti B. (1974). Theory of probability: a critical introductory treatment. Wiley.
  • Dondio P. (2014). Toward a computational analysis of probabilistic argumentation frameworks. Cybernetics and Systems, 45, 254–278. doi: 10.1080/01969722.2014.894854
  • Dung P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–357. doi: 10.1016/0004-3702(94)00041-X
  • Dung P. M., & Thang P. M. (2010). Towards (Probabilistic) argumentation for jury-based dispute resolution. Proceedings of the 2010 conference on computational models of argument, COMMA'10 (pp. 171–182). IOS Press.
  • Fazzinga B., Flesca S., & Parisi F. (2013). On the complexity of probabilistic abstract argumentation. IJCAI, IJCAI/AAAI.
  • Fruhwirth T. (2009). Constraint Handling Rules (1st ed.). Cambridge University Press.
  • Getoor L., Friedman N., Koller D., Pfeffer A., & Taskar B. (2007). Probabilistic relational models. An introduction to statistical relational learning. MIT Press.
  • Getoor L., & Taskar B. (2007). Introduction to statistical relational learning (Adaptive computation and machine learning). The MIT Press.
  • Governatori G., Maher M. J., Billington D., & Antoniou G. (2004). Argumentation Semantics for Defeasible Logic. Journal of Logic and Computation, 14, 675–702. doi: 10.1093/logcom/14.5.675
  • Governatori G., Rotolo A., & Sartor G. (2005). Temporalised normative positions in defeasible logic. In Proceedings of the 10th International Conference on Artificial Intelligence and Law (pp. 25–34). ACM.
  • Hinton G. E. (2002a). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771–1800. doi: 10.1162/089976602760128018
  • Hinton G. E. (2002b). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771–1800. doi: 10.1162/089976602760128018
  • Hinton, G. (2012), “A Practical Guide to Training Restricted Boltzmann Machines,” Vol. 7700, Springer Berlin Heidelberg, pp. 599–619.
  • Hinton A., Kwiatkowska M., Norman G., & Parker D. (2006). PRISM: A tool for automatic verification of probabilistic systems. Proceedings of the 12th international conference on tools and algorithms for the construction and analysis of systems, TACAS'06 (pp. 441–444). Springer.
  • Hopfield J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2554–2558. doi: 10.1073/pnas.79.8.2554
  • Hunter A. (2013). A probabilistic approach to modelling uncertain logical arguments. International Journal of Approximating Reasoning, 54, 47–81. doi: 10.1016/j.ijar.2012.08.003
  • Hunter A., & Thimm M. (2014). Probabilistic argumentation with epistemic extensions and incomplete information. CoRR, abs/1405.3376.
  • Jaynes E. T. (1957). Information theory and statistical mechanics. Physical Review, 106, 620–630. doi: 10.1103/PhysRev.106.620
  • Koller D., & Friedman N. (2009). Probabilistic graphical models: principles and techniques – adaptive computation and machine learning. The MIT Press.
  • LeCun Y., Chopra S., Hadsell R., Ranzato M., & Huang F. (2006). A tutorial on energy-based learning. In G. Bakir, T. Hofman, B. Schölkopf, A. Smola & B. Taskar (Eds.), Predicting structured data. MIT Press.
  • Li S. Z. (1995). Markov random field modeling in computer vision. Springer.
  • Li H. (2015). Probabilistic argumentation. University of Aberdeen.
  • Li H., Oren N., & Norman T. J. (2011). Probabilistic argumentation frameworks. Revised selected papers of first international workshop theory and applications of formal argumentation, TAFA'11. Lecture Notes in Computer Science (pp. 1–16). Springer.
  • Modgil S., & Caminada M. (2009). Proof theories and algorithms for abstract argumentation frameworks. Argumentation in artificial intelligence. Springer, pp. 105–129.
  • Mozina M., Zabkar J., & Bratko I. (2007). Argument based machine learning. Artificial Intelligence, 171, 922–937. doi: 10.1016/j.artint.2007.04.007
  • Murphy K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
  • Nute D. (2001). Defeasible logic. Handbook of logic in artificial intelligence and logic programming. Oxford University Press, pp. 353–395.
  • Paolucci M., Kossmann D., Conte R., Lukowicz P., Argyrakis P., Blandford A., … Helbing D. (2013). Towards a living earth simulator. CoRR, abs/1304.1903.
  • Prakken H., & Sartor G. (1997). Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics, 7. doi: 10.1080/11663081.1997.10510900
  • Rahwan I. (2008). Mass argumentation and the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web, 6, 29–37. doi: 10.1016/j.websem.2007.11.007
  • Richardson M., & Domingos P. (2006). Markov logic networks. Machine Learning, 62, 107–136. doi: 10.1007/s10994-006-5833-1
  • Riveret R., Pitt J. V., Korkinof D., & Draief M. (2015). Neuro-symbolic agents: Boltzmann machines and probabilistic abstract argumentation with sub-arguments. Proceedings of the 2015 international conference on autonomous agents and multiagent systems, AAMAS (pp. 1481–1489).
  • Riveret R., Prakken H., Rotolo A., & Sartor G. (2008). Heuristics in argumentation: a game theory investigation. Proceedings of computational models of argument, COMMA'08, Vol. 172 of Frontiers in artificial intelligence and applications (pp. 324–335). IOS Press.
  • Riveret R., Rotolo A., & Sartor G. (2012a). Norms and learning in probabilistic logic-based agents. Proceedings of the 11th international conference in deontic logic in computer science, DEON'12: Vol. 7393. Lecture notes in computer science (pp. 123–138). Springer.
  • Riveret R., Rotolo A., & Sartor G. (2012b). Probabilistic rule-based argumentation for norm-governed learning agents. Artificial Intelligence and Law, 20, 383–420. doi: 10.1007/s10506-012-9134-7
  • Riveret R., Rotolo A., Sartor G., Prakken H., & Roth B. (2007). Success chances in argument games: a probabilistic approach to legal disputes. Proceeding of the 20th conference on legal knowledge and information systems, JURIX'07 (pp. 99–108). IOS Press.
  • Roth B., Riveret R., Rotolo A., & Governatori G. (2007). Strategic argumentation: a game theoretical investigation. Proceedings of the 11th international conference on artificial intelligence and law, ICAIL'07 (pp. 81–90). ACM.
  • Roux N. L., & Bengio Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20, 1631–1649. doi: 10.1162/neco.2008.04-07-510
  • Salakhutdinov R., & Hinton G. E. (2009). Deep Boltzmann machines. In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS: Vol. 5. JMLR Proceedings (pp. 448–455).
  • Sartor G. (2005). Legal reasoning: a cognitive approach to the law. Springer.
  • Sato T. (2008). A glimpse of symbolic-statistical modeling by PRISM. Journal of Intelligent Information Systems, 31, 161–176. doi: 10.1007/s10844-008-0062-7
  • Schneider J., Groza T., & Passant A. (2013). A Review of Argumentation for the Social Semantic Web. Semantic Web, 4, 159–218.
  • Sneyers J., Meert W., Vennekens J., Kameya Y., & Sato T. (2010). CHR(PRISM)-based probabilistic logic learning. CoRR, abs/1007.3858.
  • Sneyers J., Schreye D. D., & Fruhwirth T. (2013). Probabilistic legal reasoning in CHRiSM. Theory and Practice of Logic Programming, 13, 769–781. doi: 10.1017/S1471068413000483
  • Thimm M. (2012). A probabilistic semantics for abstract argumentation. Proceedings of the 20th European conference on artificial intelligence, ECAI'12, Vol. 242 of Frontiers in artificial intelligence and applications (pp. 750–755). IOS Press.
  • Tieleman T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. Proceedings of the 25th international conference on machine learning (pp. 1064–1071). ACM.
  • Torroni P., Gavanelli M., & Chesani F. (2007). Argumentation in the semantic web. IEEE Intelligent Systems, 22, 66–74. doi: 10.1109/MIS.2007.100
  • Torroni P., Gavanelli M., & Chesani F. (2009). Arguing on the semantic grid. Argumentation in artificial intelligence. Springer, pp. 423–441 (chap. 21).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.