1,544
Views
0
CrossRef citations to date
0
Altmetric
Review

Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2299632 | Received 18 Oct 2023, Accepted 21 Dec 2023, Published online: 18 Jan 2024

References

  • Brown R. XXXV. On the Organs and Mode of Fecundation in Orchideae and Asclepiadeae. Richard Taylor, Red Lion Court. 1833;16:685–20. doi: 10.1111/j.1095-8339.1829.tb00158.x
  • Watson ML. The Nuclear Envelope. J Cell Bio. 1955;1:257–270. doi: 10.1083/jcb.1.3.257
  • Whaley WG, Mollenhauer HH, Leech JH. Some Observations On the Nuclear Envelope. J Cell Bio. 1960;8:233–245. doi: 10.1083/jcb.8.1.233
  • Ungricht R, Kutay U. Mechanisms and functions of nuclear envelope remodelling. Nat Rev Mol Cell Biol. 2017;18:229–245. doi: 10.1038/nrm.2016.153
  • Cain NE, Starr DA. SUN proteins and nuclear envelope spacing. Nucleus. 2015;6:2–7. doi: 10.4161/19491034.2014.990857
  • Gauthier BR, Comaills V. Nuclear envelope integrity in health and disease: Consequences on genome instability and inflammation. Int J Mol Sci. 2021;22:7281. doi: 10.3390/ijms22147281
  • Rose M, Burgess JT, O’Byrne K, et al. The role of inner nuclear membrane proteins in tumourigenesis and as potential targets for cancer therapy. Cancer Metastasis Rev. 2022;41:953–963. doi: 10.1007/s10555-022-10065-z
  • Turkmen AM, Saik NO, Ullman KS. ScienceDirect The dynamic nuclear envelope : resilience in health and dysfunction in disease. Curr Opin Cell Biol. 2023;85:102230. doi: 10.1016/j.ceb.2023.102230
  • Bahmanyar S, Schlieker C, Kozminski K. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell. 2020;31:1315–1323. doi: 10.1091/mbc.E18-10-0636
  • Bragulat-Teixidor H, Ishihara K, Szücs GM, et al. The junctions connecting the endoplasmic reticulum to the nuclear envelope are constricted and remodelled during the cell cycle. bioRxiv Prepr. 2023. doi: 10.1101/2023.01.31.526419
  • Dey G, Culley S, Curran S, et al. Closed mitosis requires local disassembly of the nuclear envelope. Nature. 2020;585:119–123. doi: 10.1038/s41586-020-2648-3
  • Pintard L, Bowerman B. Mitotic cell division in caenorhabditis elegans. Genetics. 2019;211:35–73. doi: 10.1534/genetics.118.301367
  • Roubinet C, White IJ, Baum B. Asymmetric nuclear division in neural stem cells generates sibling nuclei that differ in size, envelope composition, and chromatin organization. Curr Biol. 2021;31:3973–3983.e4. doi: 10.1016/j.cub.2021.06.063
  • Kutay U, Jühlen R, Antonin W. Mitotic disassembly and reassembly of nuclear pore complexes. Trends Cell Biol. 2021;31:1019–1033. doi: 10.1016/j.tcb.2021.06.011
  • Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol. 2023;88:1–17. doi: 10.1016/j.semcancer.2022.11.013
  • Laurell E, Beck K, Krupina K, et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell. 2011;144:539–550. doi: 10.1016/j.cell.2011.01.012
  • Linder MI, Köhler M, Boersema P, et al. Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of Key Interconnecting Nucleoporins. Dev Cell. 2017;43:141–156.e7. doi: 10.1016/j.devcel.2017.08.020
  • Martino L, Morchoisne-Bolhy S, Cheerambathur DK, et al. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans. Dev Cell. 2017;43:157–171.e7. doi: 10.1016/j.devcel.2017.09.019
  • Nkombo Nkoula S, Velez-Aguilera G, Ossareh-Nazari B, et al. Mechanisms of nuclear pore complex disassembly by the mitotic Polo-like kinase 1 (PLK-1) in C. elegans embryos. Sci Adv. 2023;9:2023.02.21.528438. doi: 10.1126/sciadv.adf7826
  • Dultz E, Zanin E, Wurzenberger C, et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Bio. 2008;180:857–865. doi: 10.1083/jcb.200707026
  • Forbes DJ, Travesa A, Nord MS, et al. Nuclear transport factors: Global regulation of mitosis. Curr Opin Cell Biol. 2015;35:78–90. doi: 10.1016/j.ceb.2015.04.012
  • Gerace L, Blobel G. The Nuclear Envelope Lamina Is Reversibly Depolymerized during Mitosis. Cell. 1980;19(1):277–287. doi: 10.1016/0092-8674(80)90409-2
  • Mall M, Walter T, Gorjánácz M, et al. Mitotic lamin disassembly is triggered by lipid-mediated signaling. J Cell Bio. 2012;198:981–990. doi: 10.1083/jcb.201205103
  • Archambault V, Li J, Emond-Fraser V, et al. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.1012768
  • Patel JT, Bottrill A, Prosser SL, et al. Mitotic phosphorylation of SUN1 loosens its connection with the nuclear lamina while the LINC complex remains intact. Nucleus. 2014;5:462–473. doi: 10.4161/nucl.36232
  • Sears RM, Roux KJ. Diverse cellular functions of barrier-to-autointegration factor and its roles in disease. J Cell Sci. 2020;133. doi: 10.1242/jcs.246546
  • Baffet AD, Hu DJ, Vallee RB. Cdk1 Activates Pre-mitotic Nuclear Envelope Dynein Recruitment and Apical Nuclear Migration in Neural Stem Cells. Dev Cell. 2015;33:703–716. doi: 10.1016/j.devcel.2015.04.022
  • Beaudouin J, Gerlich D, Daigle N, et al. Nuclear Envelope Breakdown Proceeds by Microtubule-Induced Tearing of the Lamina. Cell. 2002;108:83–96. doi: 10.1016/S0092-8674(01)00627-4
  • Bodoor K, Shaikh S, Salina D, et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci. 1999;112:2253–2264. doi: 10.1242/jcs.112.13.2253
  • Turgay Y, Champion L, Balazs C, et al. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. J Cell Bio. 2014;204:1099–1109. doi: 10.1083/jcb.201310116
  • Ungricht R, Kutay U. Establishment of NE asymmetry—targeting of membrane proteins to the inner nuclear membrane. Curr Opin Cell Biol. 2015;34:135–141. doi: 10.1016/j.ceb.2015.04.005
  • Wesolowska N, Avilov I, Machado P, et al. Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. Elife. 2020;9. doi: 10.7554/eLife.49774
  • Booth AJ, Yue Z, Eykelenboom JK, et al. Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis. Elife. 2019;8. doi: 10.7554/eLife.46902
  • Champion L, Pawar S, Luithle N, et al. Dissociation of membrane–chromatin contacts is required for proper chromosome segregation in mitosis. Mol Biol Cell. 2019;30:427–440. doi: 10.1091/mbc.E18-10-0609
  • Lu L, Ladinsky MS, Kirchhausen T, et al. Cisternal Organization of the Endoplasmic Reticulum during Mitosis. Mol Biol Cell. 2009;20:3471–3480. doi: 10.1091/mbc.e09-04-0327
  • Luithle N, De Bos JU, Hovius R, et al. Torsin ATPases influence chromatin interaction of the torsin regulator LAP1. Elife. 2020;9:1–29. doi: 10.7554/ELIFE.63614
  • Belaadi N, Pernet L, Aureille J, et al. SUN2 regulates mitotic duration in response to extracellular matrix rigidity. Proc Natl Acad Sci U. 2022;119:e2116167119. doi: 10.1073/PNAS.2116167119
  • Larsson VJ, Jafferali MH, Vijayaraghavan B, et al. Mitotic spindle assembly and γ-tubulin localisation depend on the integral nuclear membrane protein Samp1. J Cell Sci. 2018;131. doi: 10.1242/jcs.211664
  • Chou YY, Upadhyayula S, Houser J, et al. Inherited nuclear pore substructures template post-mitotic pore assembly. Dev Cell. 2021;56:1786–1803.e9. doi: 10.1016/j.devcel.2021.05.015
  • Gandhimathi R, Pinotsi D, Köhler M, et al. Super‐resolution microscopy reveals focal organization of ER ‐associated Y‐complexes in mitosis. EMBO Rep. 2023;24:1–13. doi: 10.15252/embr.202356766
  • Ferrandiz N, Downie L, Starling GP, et al. Endomembranes promote chromosome missegregation by ensheathing misaligned chromosomes. J Cell Bio. 2022;221(6):221. doi: 10.1083/JCB.202203021
  • Smyth JT, Beg AM, Wu S, et al. Phosphoregulation of STIM1 Leads to Exclusion of the Endoplasmic Reticulum from the Mitotic Spindle. Curr Biol. 2012;22:1487–1493. doi: 10.1016/j.cub.2012.05.057
  • Terasaki M, Chen LB, Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Bio. 1986;103:1557–1568. doi: 10.1083/jcb.103.4.1557
  • Vedrenne C, Klopfenstein DR, Hauri HP. Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol Biol Cell. 2005;16:1928–1937. doi: 10.1091/MBC.E04-07-0554
  • Schlaitz AL, Thompson J, Wong CCL, et al. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev Cell. 2013;26:315–323. doi: 10.1016/j.devcel.2013.06.016
  • Merta H, Carrasquillo Rodríguez JW, Anjur-Dietrich MI, et al. Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation. Dev Cell. 2021;56:3364–3379.e10. doi: 10.1016/j.devcel.2021.11.009
  • Araújo M, Tavares A, Vieira DV, et al. Endoplasmic reticulum membranes are continuously required to maintain mitotic spindle size and forces. Life Sci Alliance. 2023;6:e202201540. doi: 10.26508/lsa.202201540
  • Smyth JT, Schoborg TA, Bergman ZJ, et al. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules. Open Biol. 2015;5(8):150067. doi: 10.1098/RSOB.150067
  • Waterman‐Storer CM, Sanger JW, Sanger JM. Dynamics of organelles in the mitotic spindles of living cells: Membrane and microtubule interactions. Cell Motil Cytoskeleton. 1993;26:19–39. doi: 10.1002/CM.970260104
  • Maheshwari R, Rahman MM, Drey S, et al. A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans. Curr Biol. 2023;33(5):791–806.e7. doi: 10.1016/j.cub.2022.12.059
  • Nourbakhsh K, Ferreccio AA, Bernard MJ, et al. TAOK2 is an ER-localized kinase that catalyzes the dynamic tethering of ER to microtubules. Dev Cell. 2021;56:3321–3333.e5. doi: 10.1016/j.devcel.2021.11.015
  • Voeltz GK, Prinz WA, Shibata Y, et al. A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum. Cell. 2006;124:573–586. doi: 10.1016/j.cell.2005.11.047
  • Sawyer EM, Jensen LE, Meehl JB, et al. 2023. A Flat Protein Complex Shapes Rough ER Membrane Sheets. bioRxiv. 10.06.559866.
  • Shibata Y, Shemesh T, Prinz WA, et al. Mechanisms Determining the Morphology of the Peripheral ER. Cell. 2010;143:774–788. doi: 10.1016/j.cell.2010.11.007
  • Hu J, Shibata Y, Zhu P-P, et al. A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network. Cell. 2009;138:549–561. doi: 10.1016/j.cell.2009.05.025
  • Orso G, Pendin D, Liu S, et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin. Nature. 2009;460:978–983. doi: 10.1038/nature08280
  • Puhka M, Joensuu M, Vihinen H, et al. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol Biol Cell. 2012;23:2424–2432. doi: 10.1091/mbc.e10-12-0950
  • Puhka M, Vihinen H, Joensuu M, et al. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J Cell Bio. 2007;179:895–909. doi: 10.1083/jcb.200705112
  • Wang L, Wang Y, Liang Y, et al. Specific Accumulation of Lipid Droplets in Hepatocyte Nuclei of PFOA-exposed BALB/c Mice. Sci Rep. 2013a;3:2174. doi: 10.1038/srep02174
  • Otsuka S, Steyer AM, Schorb M, et al. Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings. Nat Struct Mol Biol. 2018;25:21–28. doi: 10.1038/s41594-017-0001-9
  • Zhao G, Liu S, Arun S, et al. A tubule-sheet continuum model for the mechanism of nuclear envelope assembly. Dev Cell. 2023;58(10):847–865.e10. doi: 10.1016/J.DEVCEL.2023.04.003
  • Olsen JV, Vermeulen M, Santamaria A, et al. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Sci Signal. 2010;3. doi: 10.1126/scisignal.2000475
  • Wang S, Tukachinsky H, Romano FB, et al. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. Elife. 2016;5. doi: 10.7554/eLife.18605
  • Jozsef L, Tashiro K, Kuo A, et al. Reticulon 4 Is Necessary for Endoplasmic Reticulum Tubulation, STIM1-Orai1 Coupling, and Store-operated Calcium Entry. J Biol Chem. 2014;289:9380–9395. doi: 10.1074/jbc.M114.548602
  • Chen S, Desai T, McNew JA, et al. Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proc Natl Acad Sci. 2015;112:418–423. doi: 10.1073/pnas.1423026112
  • Zhao Y, Zhang T, Huo H, et al. Lunapark Is a Component of a Ubiquitin Ligase Complex Localized to the Endoplasmic Reticulum Three-way Junctions. J Biol Chem. 2016;291(35):18252–18262. doi: 10.1074/jbc.M116.737783
  • Zhou X, He Y, Huang X, et al. Reciprocal regulation between lunapark and atlastin facilitates ER three-way junction formation. Protein Cell. 2019;10(7):510–525. doi: 10.1007/s13238-018-0595-7
  • Wang S, Romano FB, Field CM, et al. Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts. J Cell Bio. 2013b;203:801–814. doi: 10.1083/jcb.201308001
  • Civelekoglu-Scholey G, Scholey JM. Mitotic force generators and chromosome segregation. Cell Mol Life Sci. 2010;67:2231–2250. doi: 10.1007/s00018-010-0326-6
  • Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–242. doi: 10.1038/312237a0
  • Mora-Bermúdez F, Gerlich D, Ellenberg J. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat Cell Biol. 2007;9:822–831. doi: 10.1038/ncb1606
  • Cuylen S, Blaukopf C, Politi AZ, et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. 2016;535:308–312. doi: 10.1038/nature18610
  • Ohsugi M, Adachi K, Horai R, et al. Kid-Mediated Chromosome Compaction Ensures Proper Nuclear Envelope Formation. Cell. 2008;132:771–782. doi: 10.1016/j.cell.2008.01.029
  • Haraguchi T, Koujin T, Hayakawa T, et al. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci. 2000;113:779–794. doi: 10.1242/jcs.113.5.779
  • Lu L, Ladinsky MS, Kirchhausen T. Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly. J Cell Bio. 2011;194:425–440. doi: 10.1083/JCB.201012063
  • Anderson DJ, Hetzer MW. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J Cell Bio. 2008;182:911–924. doi: 10.1083/jcb.200805140
  • Anderson DJ, Vargas JD, Hsiao JP, et al. Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo. J Cell Bio. 2009;186:183–191. doi: 10.1083/jcb.200901106
  • Haraguchi T, Koujin T, Segura-Totten M, et al. BAF is required for emerin assembly into the reforming nuclear envelope. J Cell Sci. 2001;114:4575–4585. doi: 10.1242/JCS.114.24.4575
  • Haraguchi T, Kojidani T, Koujin T, et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J Cell Sci. 2008;121:2540–2554. doi: 10.1242/jcs.033597
  • Otsuka S, Tempkin JOB, Zhang W, et al. A quantitative map of nuclear pore assembly reveals two distinct mechanisms. Nature. 2023;613(7944):575–581. doi: 10.1038/s41586-022-05528-w
  • Tseng LC, Chen RH, Hetzer MW. Temporal control of nuclear envelope assembly by phosphorylation of lamin B receptor. Mol Biol Cell. 2011;22:3306–3317. doi: 10.1091/mbc.E11-03-0199
  • Bilir Ş, Kojidani T, Mori C, et al. Roles of Nup133, Nup153 and membrane fenestrations in assembly of the nuclear pore complex at the end of mitosis. Genes Cells. 2019;24:338–353. doi: 10.1111/gtc.12677
  • Samwer M, Schneider MWG, Hoefler R, et al. DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes. Cell. 2017;170:956–972.e23. doi: 10.1016/j.cell.2017.07.038
  • Dechat T, Gajewski A, Korbei B, et al. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci. 2004;117:6117–6128. doi: 10.1242/jcs.01529
  • Golchoubian B, Brunner A, Bragulat-Teixidor H, et al. Reticulon-like REEP4 at the inner nuclear membrane promotes nuclear pore complex formation. J Cell Bio. 2022;221:221. doi: 10.1083/jcb.202101049
  • Lu L, Kirchhausen T. Visualizing the high curvature regions of post-mitotic nascent nuclear envelope membrane. Commun Integr Biol. 2012;5:16–18. doi: 10.4161/cib.18308
  • Moriuchi T, Hirose F. SUMOylation of RepoMan during late telophase regulates dephosphorylation of lamin A. J Cell Sci. 2021;134(17):134. doi: 10.1242/jcs.247171
  • Steen RL, Martins SB, Taskén K, et al. Recruitment of Protein Phosphatase 1 to the Nuclear Envelope by a-Kinase Anchoring Protein Akap149 Is a Prerequisite for Nuclear Lamina Assembly. J Cell Bio. 2000;150:1251–1262. doi: 10.1083/jcb.150.6.1251
  • Walther TC, Askjaer P, Gentzel M, et al. RanGTP mediates nuclear pore complex assembly. Nature. 2003;424:689–694. doi: 10.1038/nature01898
  • Jäkel S, Mingot J-M, Schwarzmaier P, et al. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 2002;21:377–386. doi: 10.1093/emboj/21.3.377
  • Liu S, Pellman D. The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus. 2020;11:35–52. doi: 10.1080/19491034.2020.1742064
  • Otsuka S, Ellenberg J. Mechanisms of nuclear pore complex assembly – two different ways of building one molecular machine. FEBS Lett. 2018;592:475–488. doi: 10.1002/1873-3468.12905
  • Patrick Lusk C, Makhnevych T, Marelli M, et al. Karyopherins in nuclear pore biogenesis: A role for Kap121p in the assembly of Nup53p into nuclear pore complexes. J Cell Bio. 2002;159:267–278. doi: 10.1083/jcb.200203079
  • Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF–LEM-mediated hole closure. J Cell Sci. 2023;136. doi: 10.1242/jcs.261385
  • Gu M, LaJoie D, Chen OS, et al. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc Natl Acad Sci U S A. 2017;114:E2166–E2175. doi: 10.1073/pnas.1613916114
  • Olmos Y, Hodgson L, Mantell J, et al. ESCRT-III controls nuclear envelope reformation. Nature. 2015;522:236–239. doi: 10.1038/nature14503
  • Ventimiglia LN, Cuesta-Geijo MA, Martinelli N, et al. CC2D1B Coordinates ESCRT-III Activity during the Mitotic Reformation of the Nuclear Envelope. Dev Cell. 2018;47:547–563.e6. doi: 10.1016/j.devcel.2018.11.012
  • Vietri M, Schink KO, Campsteijn C, et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015;522:231–235. doi: 10.1038/nature14408
  • von Appen A, LaJoie D, Johnson IE, et al. LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. Nature. 2020;582:115–118. doi: 10.1038/s41586-020-2232-x
  • Gatta AT, Olmos Y, Stoten CL, et al. Cdk1 controls chmp7-dependent nuclear envelope reformation. Elife. 2021;10:1–25. doi: 10.7554/eLife.59999
  • Lee IJ, Stokasimov E, Dempsey N, et al. Factors promoting nuclear envelope assembly independent of the canonical ESCRT pathway. J Cell Bio. 2020;219. doi: 10.1083/JCB.201908232
  • Kinugasa Y, Hirano Y, Sawai M, et al. The very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function in fission yeast cells. J Cell Sci. 2019;132. doi: 10.1242/jcs.229021
  • Penfield L, Shankar R, Szentgyörgyi E, et al. Regulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure. J Cell Bio. 2020;219. doi: 10.1083/jcb.201908179
  • Joardar A, Pattnaik GP, Chakraborty H. Mechanism of Membrane Fusion: Interplay of Lipid and Peptide. J Membr Biol. 2022;255:211–224. doi: 10.1007/s00232-022-00233-1
  • Hampoelz B, Baumbach J. Nuclear envelope assembly and dynamics during development. Semin Cell Dev Biol. 2023;133:96–106. doi: 10.1016/j.semcdb.2022.02.028
  • Otsuka S, Szymborska A, Ellenberg J. Imaging the assembly, structure, and function of the nuclear pore inside cells. Methods in Cell Biology. 2014;122:219–238. doi: 10.1016/B978-0-12-417160-2.00010-2
  • Cuylen-Haering S, Petrovic M, Hernandez-Armendariz A, et al. Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly. Nature. 2020;587:285–290. doi: 10.1038/s41586-020-2672-3
  • Spits M, Janssen LJ, Voortman LM, et al. Homeostasis of soluble proteins and the proteasome post nuclear envelope reformation in mitosis. J Cell Sci. 2019;132. doi: 10.1242/jcs.225524
  • Swanson JA, Mcneil PL. Nuclear reassembly excludes large macromolecules. Science. 1987;238:548–550. doi: 10.1126/science.2443981
  • Morgan DO. The cell cycle: Principles of control. London: New Science Press; 2007.
  • Dultz E, Huet S, Ellenberg J. Formation of the nuclear envelope permeability barrier studied by sequential photoswitching and flux analysis. Biophys J. 2009;97:1891–1897. doi: 10.1016/j.bpj.2009.07.024
  • Maeshima K, Iino H, Hihara S, et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat Struct Mol Biol. 2010;17:1065–1071. doi: 10.1038/nsmb.1878
  • Otsuka S, Bui KH, Schorb M, et al. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. Elife. 2016;5. doi: 10.7554/eLife.19071
  • Hampoelz B, Mackmull M-T, Machado P, et al. Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development. Cell. 2016;166:664–678. doi: 10.1016/j.cell.2016.06.015
  • Mukherjee RN, Sallé J, Dmitrieff S, et al. The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos. Dev Cell. 2020;54:395–409.e7. doi: 10.1016/j.devcel.2020.05.003
  • Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol. 2001;205:149–214. doi: 10.1016/s0074-7696(01)05004-5
  • Bruce A, Alexander J, Julian L, et al. Molecular Biology of the Cell. 6th ed. New York: Garl Science The Endopl; 2014.
  • Griffiths G, Warren G, Quinn P, et al. Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies. J Cell Bio. 1984;98:2133–2141. doi: 10.1083/jcb.98.6.2133
  • Heinrich L, Bennett D, Ackerman D, et al. Whole-cell organelle segmentation in volume electron microscopy. Nature. 2021;599:141–146. doi: 10.1038/s41586-021-03977-3
  • Milo R, Phillips R. Cell Biology by the Numbers. New York: Garland Science; 2015.
  • Zuleger N, Robson MI, Schirmer EC. The nuclear envelope as a chromatin organizer. Nucleus. 2011;2(5):339–349. doi: 10.4161/nucl.2.5.17846
  • Boni A, Politi AZ, Strnad P, et al. Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J Cell Bio. 2015;209:705–720. doi: 10.1083/jcb.201409133
  • Haider A, Wei YC, Lim K, et al. PCYT1A Regulates Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane Stored Curvature Elastic Stress. Dev Cell. 2018;45:481–495.e8. doi: 10.1016/j.devcel.2018.04.012
  • Lee S, Carrasquillo Rodrguez JW, Merta H, et al. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. J Cell Bio. 2023;222:222. doi: 10.1083/jcb.202304026
  • Sołtysik K, Ohsaki Y, Tatematsu T, et al. Nuclear lipid droplets form in the inner nuclear membrane in a seipin-independent manner. J Cell Bio. 2021;220(1):220. doi: 10.1083/jcb.202005026
  • Foo S, Cazenave-Gassiot A, Wenk MR, et al. Diacylglycerol at the inner nuclear membrane fuels nuclear envelope expansion in closed mitosis. J Cell Sci. 2023;136. doi: 10.1242/jcs.260568
  • Saik NO, Ptak C, Rehman S, et al. SUMOylation at the inner nuclear membrane facilitates nuclear envelope biogenesis during mitosis. J Cell Bio. 2023;222(8):222. doi: 10.1083/jcb.202208137
  • Eckhardt AE, Timpte CS, Abernethy JL, et al. Structural properties of porcine submaxillary gland apomucin. J Biol Chem. 1987;262:11339–11344. doi: 10.1016/S0021-9258(18)60964-0
  • Deschuyteneer M, Eckhardt AE, Roth J, et al. The subcellular localization of apomucin and nonreducing terminal N-acetylgalactosamine in porcine submaxillary glands. J Biol Chem. 1988;263:2452–2459. doi: 10.1016/S0021-9258(18)69228-2
  • Tsuji T, Cheng J, Tatematsu T, et al. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc Natl Acad Sci U S A. 2019;116:13368–13373. doi: 10.1073/pnas.1822025116
  • Craig S, Staehlin A. High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur J Cell Biol. 1988;46:80–93.
  • McMahon HT, Boucrot E. Membrane curvature at a glance. J Cell Sci. 2015;128:1065–1070. doi: 10.1242/jcs.114454
  • West M, Zurek N, Hoenger A, et al. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J Cell Bio. 2011;193:333–346. doi: 10.1083/jcb.201011039
  • Romanauska A, Köhler A. The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell. 2018;174:700–715.e18. doi: 10.1016/j.cell.2018.05.047
  • Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Bio. 2019;218:3171–3187. doi: 10.1083/jcb.201906047
  • Hirano Y, Kinugasa Y, Osakada H, et al. Lem2 and Lnp1 maintain the membrane boundary between the nuclear envelope and endoplasmic reticulum. Commun Biol. 2020;3:276. doi: 10.1038/s42003-020-0999-9
  • Kume K, Cantwell H, Burrell A, et al. Nuclear membrane protein Lem2 regulates nuclear size through membrane flow. Nat Commun. 2019;10:1871. doi: 10.1038/s41467-019-09623-x
  • Mannino PJ, Lusk CP. Quality control mechanisms that protect nuclear envelope identity and function. J Cell Bio. 2022;221(9):221. doi: 10.1083/jcb.202205123
  • Baron O, Boudi A, Dias C, et al. Stall in Canonical Autophagy-Lysosome Pathways Prompts Nucleophagy-Based Nuclear Breakdown in Neurodegeneration. Curr Biol. 2017;27:3626–3642.e6. doi: 10.1016/j.cub.2017.10.054
  • Dou Z, Ivanov A, Adams PD, et al. Mammalian autophagy degrades nuclear constituents in response to tumorigenic stress. Autophagy. 2016;12:1416–1417. doi: 10.1080/15548627.2015.1127465
  • Papandreou M-E, Konstantinidis G, Tavernarakis N. Nucleophagy delays aging and preserves germline immortality. Nat Aging. 2022;3:34–46. doi: 10.1038/s43587-022-00327-4
  • Park Y-E, Hayashi YK, Bonne G, et al. Autophagic degradation of nuclear components in mammalian cells. Autophagy. 2009;5:795–804. doi: 10.4161/auto.8901
  • Rogerson C, Bergamaschi D, O’Shaughnessy RFL. Uncovering mechanisms of nuclear degradation in keratinocytes: A paradigm for nuclear degradation in other tissues. Nucleus. 2018;9:56–64. doi: 10.1080/19491034.2017.1412027
  • Cornelison GL, Levy SA, Jenson T, et al. Tau-induced nuclear envelope invagination causes a toxic accumulation of mRNA in Drosophila. Aging Cell. 2019;18:e12847. doi: 10.1111/acel.12847
  • Frost B, Bardai FH, Feany MB. Lamin Dysfunction Mediates Neurodegeneration in Tauopathies. Curr Biol. 2016;26:129–136. doi: 10.1016/j.cub.2015.11.039
  • Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17:40–48. doi: 10.1038/NG0997-40
  • Jacquemyn J, Foroozandeh J, Vints K, et al. Torsin and NEP1R1-CTDNEP1 phosphatase affect interphase nuclear pore complex insertion by lipid-dependent and lipid-independent mechanisms. EMBO J. 2021;40:e106914. doi: 10.15252/EMBJ.2020106914
  • VanGompel MJW, Nguyen KCQ, Hall DH, et al. A novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and nuclear import. Mol Biol Cell. 2015;26:1752–1763. doi: 10.1091/mbc.E14-07-1239
  • Pappas SS, Liang C-C, Kim S, et al. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet. 2018;27:407–420. doi: 10.1093/hmg/ddx405
  • Rampello AJ, Laudermilch E, Vishnoi N, et al. Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of MLF2. J Cell Bio. 2020;219. doi: 10.1083/jcb.201910185
  • Gonzalez-Alegre P, Paulson HL. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci. 2004;24:2593–2601. doi: 10.1523/JNEUROSCI.4461-03.2004
  • Li Z, Nakatogawa H. Degradation of nuclear components via different autophagy pathways. Trends Cell Biol. 2022;32:574–584. doi: 10.1016/j.tcb.2021.12.008
  • Mochida K, Otani T, Katsumata Y, et al. Atg39 links and deforms the outer and inner nuclear membranes in selective autophagy of the nucleus. J Cell Bio. 2022;221(2):221. doi: 10.1083/jcb.202103178
  • Allegretti M, Zimmerli CE, Rantos V, et al. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature. 2020;586:796–800. doi: 10.1038/s41586-020-2670-5
  • Tomioka Y, Kotani T, Kirisako H, et al. TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. J Cell Bio. 2020;219. doi: 10.1083/JCB.201910063
  • Chandra S, Mannino PJ, Thaller DJ, et al. Atg39 selectively captures inner nuclear membrane into lumenal vesicles for delivery to the autophagosome. J Cell Bio. 2021;220(12):220. doi: 10.1083/jcb.202103030
  • Kvam E, Goldfarb DS. Structure and function of nucleus-vacuole junctions: Outer-nuclear-membrane targeting of Nvj1p and a role in tryptophan uptake. J Cell Sci. 2006;119:3622–3633. doi: 10.1242/jcs.03093
  • Roberts P, Moshitch-Moshkovitz S, Kvam E, et al. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell. 2003;14:129–141. doi: 10.1091/mbc.e02-08-0483
  • Dou Z, Xu C, Donahue G, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015;527:105–109. doi: 10.1038/nature15548
  • Kucińska MK, Fedry J, Galli C, et al. TMX4-driven LINC complex disassembly and asymmetric autophagy of the nuclear envelope upon acute ER stress. Nat Commun. 2023;14:3497. doi: 10.1038/s41467-023-39172-3
  • Li Y, Jiang X, Zhang Y, et al. Nuclear accumulation of UBC9 contributes to SUMOylation of lamin A/C and nucleophagy in response to DNA damage. J Exp Clin Cancer Res. 2019;38:1–14. doi: 10.1186/s13046-019-1048-8
  • Xu C, Wang L, Fozouni P, et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 2020;22(10):1170–1179. doi: 10.1038/s41556-020-00579-5
  • Buchwalter A, Schulte R, Tsai H, et al. Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. Elife. 2019;8. doi: 10.7554/eLife.49796
  • Mochida K, Oikawa Y, Kimura Y, et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 2015;522:359–362. doi: 10.1038/nature14506
  • Chen Q, Xiao Y, Chai P, et al. ATL3 Is a Tubular ER-Phagy Receptor for GABARAP-Mediated Selective Autophagy. Curr Biol. 2019;29(5):846–855.e6. doi: 10.1016/j.cub.2019.01.041
  • Smith MD, Harley ME, Kemp AJ, et al. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev Cell. 2018;44:217–232.e11. doi: 10.1016/j.devcel.2017.11.024
  • Khaminets A, Heinrich T, Mari M, et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature. 2015;522:354–358. doi: 10.1038/nature14498
  • Grumati P, Morozzi G, Hölper S, et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Elife. 2017;6. doi: 10.7554/eLife.25555
  • Fumagalli F, Noack J, Bergmann TJ, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol. 2016;18:1173–1184. doi: 10.1038/ncb3423
  • An H, Ordureau A, Paulo JA, et al. TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress. Mol Cell. 2019;74:891–908.e10. doi: 10.1016/j.molcel.2019.03.034
  • Chino H, Hatta T, Natsume T, et al. Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Mol Cell. 2019;74:909–921.e6. doi: 10.1016/j.molcel.2019.03.033
  • Fielden J, Popović M, Ramadan K. TEX264 at the intersection of autophagy and DNA repair. Autophagy. 2022;18:40–49. doi: 10.1080/15548627.2021.1894059
  • Foresti O, Rodriguez-Vaello V, Funaya C, et al. Quality control of inner nuclear membrane proteins by the Asi complex. Science. 2014;346:751–755. doi: 10.1126/science.1255638
  • Khmelinskii A, Blaszczak E, Pantazopoulou M, et al. Protein quality control at the inner nuclear membrane. Nature. 2014;516:410–413. doi: 10.1038/nature14096
  • Smoyer CJ, Smith SE, Gardner JM, et al. Distribution of Proteins at the Inner Nuclear Membrane Is Regulated by the Asi1 E3 Ligase in Saccharomyces cerevisiae. Genetics. 2019;211:1269–1282. doi: 10.1534/genetics.119.301911
  • Boban M, Foisner R. Degradation-mediated protein quality control at the inner nuclear membrane. Nucleus. 2016;7:41–49. doi: 10.1080/19491034.2016.1139273
  • Natarajan N, Foresti O, Wendrich K, et al. Quality Control of Protein Complex Assembly by a Transmembrane Recognition Factor. Mol Cell. 2020;77:108–119.e9. doi: 10.1016/j.molcel.2019.10.003
  • Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature. 2001;414(6864):652–656. doi: 10.1038/414652a
  • Hahn L, Carvalho P. Making and breaking the inner nuclear membrane proteome. Curr Opin Cell Biol. 2022;78:102115. doi: 10.1016/j.ceb.2022.102115
  • Tsai PL, Cameron CJF, Forni MF, et al. Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins. Cell Rep. 2022;41:111675. doi: 10.1016/j.celrep.2022.111675
  • Coyaud E, Mis M, Laurent EMN, et al. BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates*. Mol & Cell Proteomics. 2015;14:1781–1795. doi: 10.1074/mcp.M114.045658
  • Krshnan L, Siu WS, Van de Weijer M, et al. Regulated degradation of the inner nuclear membrane protein SUN2 maintains nuclear envelope architecture and function. Elife. 2022;11:1–22. doi: 10.7554/eLife.81573
  • Collinson LM, Bosch C, Bullen A, et al. Volume EM: a quiet revolution takes shape. Nat Methods. 2023;20:777–782. doi: 10.1038/s41592-023-01861-8
  • Jacquemet G, Carisey AF, Hamidi H, et al. The cell biologist’s guide to super-resolution microscopy. J Cell Sci. 2020;133. doi: 10.1242/jcs.240713
  • Cheng L-C, Zhang X, Baboo S, et al. Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope. Life Sci Alliance. 2023;6:e202301998. doi: 10.26508/lsa.202301998
  • Reinhard J, Klose C, Schuldiner M, et al. A new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. bioRxiv. 2022; doi: 10.1101/2022.09.15.508072