1,856
Views
0
CrossRef citations to date
0
Altmetric
Review

Nuclear pore dysfunction and disease: a complex opportunity

ORCID Icon & ORCID Icon
Article: 2314297 | Received 27 Nov 2023, Accepted 30 Jan 2024, Published online: 21 Feb 2024

References

  • Webster BM, Lusk CP. Border safety: quality control at the nuclear envelope. Trends Cell Biol. 2016;26:29–30. doi:10.1016/j.tcb.2015.08.002
  • Robijns J, Houthaeve G, Braeckmans K, et al. Loss of nuclear envelope integrity in aging and disease. Int Rev Cell Mol Biol. 2018;336:205–222.
  • Lindenboim L, Zohar H, Worman HJ, et al. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov. 2020;6(1):29. doi: 10.1038/s41420-020-0256-5
  • Gauthier BR, Comaills V. Nuclear envelope integrity in health and disease: consequences on genome instability and inflammation. IJMS. 2021;22(14):7281. doi: 10.3390/ijms22147281
  • Metuzals J, Robitaille Y, Houghton S, et al. Paired helical filaments and the cytoplasmic-nuclear interface in Alzheimer’s disease. J Neurocytol. 1988;17(6):827–833. doi: 10.1007/BF01216709
  • Lee HG, Ueda M, Miyamoto Y, et al. Aberrant localization of importin α1 in hippocampal neurons in alzheimer disease. Brain Res. 2006;1124(1):1–4. doi: 10.1016/j.brainres.2006.09.084
  • Sheffield LG, Miskiewicz HB, Tannenbaum LB, et al. Nuclear pore complex proteins in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65(1):45–54. doi: 10.1097/01.jnen.0000195939.40410.08
  • Mastroeni D, Chouliaras L, Grover A, et al. Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer’s disease pathophysiology. PLoS One. 2013;8(1):e53349. doi: 10.1371/journal.pone.0053349
  • Eftekharzadeh B, Daigle JG, Kapinos LE, et al. Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease. Neuron. 2018;99(5):925–940 e927. doi: 10.1016/j.neuron.2018.07.039
  • Leone L, Colussi C, Gironi K, et al. Altered Nup153 expression impairs the function of cultured hippocampal neural stem cells isolated from a mouse Model of Alzheimer’s disease. Mol Neurobiol. 2019;56(8):5934–5949. doi: 10.1007/s12035-018-1466-1
  • Diez L, Kapinos LE, Hochmair J, et al. Phosphorylation but not oligomerization drives the accumulation of Tau with Nucleoporin Nup98. Int J Mol Sci. 2022;23(7):3495. doi: 10.3390/ijms23073495
  • Dickson JR, Frosch MP, Hyman BT. Altered localization of nucleoporin 98 in primary tauopathies. Brain Commun. 2023;5(1):fcac334. doi: 10.1093/braincomms/fcac334
  • Donnaloja F, Limonta E, Mancosu C, et al. Unravelling the mechanotransduction pathways in Alzheimer’s disease. J Biol Eng. 2023;17(1):22. doi: 10.1186/s13036-023-00336-w
  • Nag N, Tripathi T. Tau–FG-nucleoporin98 interaction and impaired nucleocytoplasmic transport in Alzheimer’s disease. Brief Funct Genomics. 2023;22(2):161–167. doi: 10.1093/bfgp/elac022
  • Um JW, Min DS, Rhim H, et al. Parkin ubiquitinates and promotes the degradation of RanBP2. J Biol Chem. 2006;281(6):3595–3603. doi: 10.1074/jbc.M504994200
  • Alegre-Abarrategui J, Ansorge O, Esiri M, et al. LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson’s disease. Neuropathol Appl Neurobiol. 2008;34:272–283. doi:10.1111/j.1365-2990.2007.00888.x
  • Kokoulina P, Rohn TT. Caspase-cleaved transactivation response DNA-binding protein 43 in Parkinson’s disease and dementia with Lewy bodies. Neurodegener Dis. 2010;7(4):243–250. doi: 10.1159/000287952
  • Liu GH, Qu J, Suzuki K, et al. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature. 2012;491(7425):603–607. doi: 10.1038/nature11557
  • Shani V, Safory H, Szargel R, et al. Physiological and pathological roles of LRRK2 in the nuclear envelope integrity. Hum Mol Genet. 2019;28:3982–3996. doi: 10.1093/hmg/ddz245
  • Chen X, Xie C, Tian W, et al. Parkinson’s disease-related Leucine-rich repeat kinase 2 modulates nuclear morphology and genomic stability in striatal projection neurons during aging. Mol Neurodegener. 2020;15(1):12. doi: 10.1186/s13024-020-00360-0
  • Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, et al. Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear Integrity and Nucleocytoplasmic Transport. Neuron. 2017;94(1):48–57.e44. doi: 10.1016/j.neuron.2017.03.027
  • Grima JC, Daigle JG, Arbez N, et al. Mutant huntingtin disrupts the nuclear pore complex. Neuron. 2017;94(1):93–107 e106. doi: 10.1016/j.neuron.2017.03.023
  • Lange J, Wood-Kaczmar A, Ali A, et al. Mislocalization of nucleocytoplasmic transport proteins in human Huntington’s disease PSC-Derived striatal neurons. Front Cell Neurosci. 2021;15:742763. doi: 10.3389/fncel.2021.742763
  • Pesiridis GS, Lee VM, Trojanowski JQ. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet. 2009;18(R2):R156–R162. doi: 10.1093/hmg/ddp303
  • DeJesus-Hernandez M, Kocerha J, Finch N, et al. De Novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat. 2010;31(5):E1377–E1389. doi: 10.1002/humu.21241
  • Dormann D, Rodde R, Edbauer D, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010;29(16):2841–2857. doi: 10.1038/emboj.2010.143
  • Ito D, Seki M, Tsunoda Y, et al. Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol. 2011;69(1):152–162. doi: 10.1002/ana.22246
  • Niu C, Zhang J, Gao F, et al. FUS-NLS/Transportin 1 complex structure provides insights into the nuclear targeting mechanism of FUS and the implications in ALS. PLoS One. 2012;7(10):e47056. doi: 10.1371/journal.pone.0047056
  • Zhang ZC, Chook YM. Structural and energetic basis of ALS-causing mutations in the atypical proline–tyrosine nuclear localization signal of the fused in sarcoma protein (FUS). Proc Natl Acad Sci, USA. 2012;109(30):12017–12021. doi: 10.1073/pnas.1207247109
  • Baron DM, Kaushansky LJ, Ward CL, et al. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Mol Neurodegener. 2013;8(1):30. doi: 10.1186/1750-1326-8-30
  • Kim HJ, Kim NC, Wang Y-D, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495(7442):467–473. doi: 10.1038/nature11922
  • Vance C, Scotter EL, Nishimura AL, et al. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet. 2013;22(13):2676–2688. doi: 10.1093/hmg/ddt117
  • Zhang K, Donnelly CJ, Haeusler AR, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525(7567):56–61. doi: 10.1038/nature14973
  • Chou CC, Zhang Y, Umoh ME, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci. 2018;21(2):228–239. doi: 10.1038/s41593-017-0047-3
  • Guo L, Kim HJ, Wang H, et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-Binding proteins with prion-like domains. Cell. 2018;173(3):677–692 e620. doi: 10.1016/j.cell.2018.03.002
  • Zhang K, Daigle JG, Cunningham KM, et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell. 2018;173(4):958–971 e917. doi: 10.1016/j.cell.2018.03.025
  • Aizawa H, Yamashita T, Kato H, et al. Impaired nucleoporins are present in sporadic amyotrophic lateral sclerosis motor neurons that exhibit mislocalization of the 43-kDa TAR DNA-Binding protein. J Clin Neurol. 2019;15(1):62–67. doi: 10.3988/jcn.2019.15.1.62
  • Gasset-Rosa F, Lu S, Yu H, et al. Cytoplasmic TDP-43 De-mixing Independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron. 2019;102(2):339–357.e7. doi: 10.1016/j.neuron.2019.02.038
  • Giampetruzzi A, Danielson EW, Gumina V, et al. Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat Commun. 2019;10(1):3827. doi: 10.1038/s41467-019-11837-y
  • Tyzack GE, Luisier R, Taha DM, et al. Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis. Brain. 2019;142(9):2572–2580. doi: 10.1093/brain/awz217
  • Coyne AN, Zaepfel BL, Hayes L, et al. G4C2 repeat RNA initiates a POM121-mediated reduction in specific nucleoporins in C9orf72 ALS/FTD. Neuron. 2020;107(6):1124–1140 e1111. doi: 10.1016/j.neuron.2020.06.027
  • Hayes LR, Duan L, Bowen K, et al. C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. Elife. 2020;9. doi: 10.7554/eLife.51685
  • Hutten S, Usluer S, Bourgeois B, et al. Nuclear import receptors directly bind to Arginine-Rich Dipeptide repeat proteins and suppress their pathological interactions. Cell Rep. 2020;33(12):108538. doi: 10.1016/j.celrep.2020.108538
  • Coyne AN, Baskerville V, Zaepfel BL, et al. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci Transl Med. 2021;13(604). doi: 10.1126/scitranslmed.abe1923
  • Lin YC, Kumar MS, Ramesh N, et al. Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nat Neurosci. 2021;24(8):1077–1088. doi: 10.1038/s41593-021-00859-9
  • Dubey SK, Maulding K, Sung H, et al. Nucleoporins are degraded via upregulation of ESCRT-III/Vps4 complex in Drosophila models of C9-ALS/FTD. Cell Rep. 2022;40(12):111379. doi: 10.1016/j.celrep.2022.111379
  • Gleixner AM, Verdone BM, Otte CG, et al. NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun. 2022;13(1):3380. doi: 10.1038/s41467-022-31098-6
  • Khalil B, Chhangani D, Wren MC, et al. Nuclear import receptors are recruited by FG-nucleoporins to rescue hallmarks of TDP-43 proteinopathy. Mol Neurodegener. 2022;17(1):80. doi: 10.1186/s13024-022-00585-1
  • Vanneste J, Vercruysse T, Boeynaems S, et al. Cellular stress induces nucleocytoplasmic transport deficits independent of stress granules. Biomedicines. 2022;10(5):1057. doi: 10.3390/biomedicines10051057
  • Spead O, Zaepfel BL, Rothstein JD. Nuclear Pore Dysfunction in Neurodegeneration. Neurotherapeutics. 2022;19(4):1050–1060. doi: 10.1007/s13311-022-01293-w
  • Anderson EN, Morera AA, Kour S, et al. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. Elife. 2021;10. doi: 10.7554/eLife.67587
  • D’Angelo MA, Raices M, Panowski SH, et al. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell. 2009;136(2):284–295. doi: 10.1016/j.cell.2008.11.037
  • Rempel IL, Crane MM, Thaller DJ, et al. Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics. Elife. 2019;8. doi: 10.7554/eLife.48186
  • Park JH, Ryu SJ, Kim BJ, et al. Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Exp Mol Med. 2021;53(6):1092–1108. doi: 10.1038/s12276-021-00643-6
  • Lin DH, Hoelz A. The structure of the nuclear pore complex (an update). Annu Rev Biochem. 2019;88(1):725–783. doi: 10.1146/annurev-biochem-062917-011901
  • Maul GG, Deaven L. Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J Cell Bio. 1977;73(3):748–760. doi: 10.1083/jcb.73.3.748
  • Garcia-Segura LM, Lafarga M, Berciano MT, et al. Distribution of nuclear pores and chromatin organization in neurons and glial cells of the rat cerebellar cortex. J Comp Neurol. 1989;290(3):440–450. doi: 10.1002/cne.902900311
  • Jamali T, Jamali Y, Mehrbod M, et al. Nuclear pore complex: biochemistry and biophysics of nucleocytoplasmic transport in health and disease. Int Rev Cell Mol Biol. 2011;287:233–286.
  • Bley CJ, Nie S, Mobbs GW, et al. Architecture of the cytoplasmic face of the nuclear pore. Science. 2022;376(6598):eabm9129. doi: 10.1126/science.abm9129
  • Fontana P, Dong Y, Pi X, et al. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science. 2022;376(6598):eabm9326. doi: 10.1126/science.abm9326
  • Petrovic S, Samanta D, Perriches T, et al. Architecture of the linker-scaffold in the nuclear pore. Science. 2022;376(6598):eabm9798. doi: 10.1126/science.abm9798
  • Lutzmann M, Kunze R, Buerer A, et al. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 2002;21(3):387–397. doi: 10.1093/emboj/21.3.387
  • Frey S, Gorlich D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell. 2007;130(3):512–523. doi: 10.1016/j.cell.2007.06.024
  • Patel SS, Belmont BJ, Sante JM, et al. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell. 2007;129(1):83–96. doi: 10.1016/j.cell.2007.01.044
  • Schmidt HB, Görlich D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. Elife. 2015;4. doi: 10.7554/eLife.04251
  • Li C, Goryaynov A, Yang W. The selective permeability barrier in the nuclear pore complex. Nucleus. 2016;7(5):430–446. doi: 10.1080/19491034.2016.1238997
  • Ng SC, Biswas A, Huyton T, et al. Barrier properties of Nup98 FG phases ruled by FG motif identity and inter-FG spacer length. Nat Commun. 2023;14(1):747. doi: 10.1038/s41467-023-36331-4
  • Frey S, Richter RP, Gorlich D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science. 2006;314(5800):815–817. doi: 10.1126/science.1132516
  • Hulsmann BB, Labokha AA, Gorlich D. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell. 2012;150(4):738–751. doi: 10.1016/j.cell.2012.07.019
  • Celetti G, Paci G, Caria J, et al. The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes. J Cell Bio. 2020;219(1). doi: 10.1083/jcb.201907157
  • Denning DP, Patel SS, Uversky V, et al. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci, USA. 2003;100(5):2450–2455. doi: 10.1073/pnas.0437902100
  • Yu M, Heidari M, Mikhaleva S, et al. Visualizing the disordered nuclear transport machinery in situ. Nature. 2023;617(7959):162–169. doi: 10.1038/s41586-023-05990-0
  • Kalita J, Kapinos LE, Zheng T, et al. Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage. J Cell Bio. 2022;221(3). doi: 10.1083/jcb.202108107
  • Ibanez de Opakua A, Geraets JA, Frieg B, et al. Molecular interactions of FG nucleoporin repeats at high resolution. Nat Chem. 2022;14(11):1278–1285. doi: 10.1038/s41557-022-01035-7
  • Kapinos LE, Huang B, Rencurel C, et al. Karyopherins regulate nuclear pore complex barrier and transport function. J Cell Bio. 2017;216(11):3609–3624. doi: 10.1083/jcb.201702092
  • Wälde S, Thakar K, Hutten S, et al. The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner. Traffic. 2012;13(2):218–233. doi: 10.1111/j.1600-0854.2011.01302.x
  • Lemaître C, Fischer B, Kalousi A, et al. The nucleoporin 153, a novel factor in double-strand break repair and DNA damage response. Oncogene. 2012;31(45):4803–4809. doi: 10.1038/onc.2011.638
  • Moudry P, Lukas C, Macurek L, et al. Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1. Cell Death Differ. 2012;19(5):798–807. doi: 10.1038/cdd.2011.150
  • Waldmann I, Spillner C, Kehlenbach RH. The nucleoporin-like protein NLP1 (hCG1) promotes CRM1-dependent nuclear protein export. J Cell Sci. 2012;125(1):144–154. doi: 10.1242/jcs.090316
  • Gozalo A, Duke A, Lan Y, et al. Core components of the nuclear pore bind distinct states of chromatin and contribute to polycomb repression. Mol Cell. 2020;77(1):67–81.e67. doi: 10.1016/j.molcel.2019.10.017
  • Kadota S, Ou J, Shi Y, et al. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nat Commun. 2020;11(1):2606. doi: 10.1038/s41467-020-16394-3
  • Ibarra A, Benner C, Tyagi S, et al. Nucleoporin-mediated regulation of cell identity genes. Genes Dev. 2016;30(20):2253–2258. doi: 10.1101/gad.287417.116
  • Labade AS, Karmodiya K, Sengupta K. HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenet Chromatin. 2016;9(1):54. doi: 10.1186/s13072-016-0106-0
  • Zhu X, Qi C, Wang R, et al. Acute depletion of human core nucleoporin reveals direct roles in transcription control but dispensability for 3D genome organization. Cell Rep. 2022;41(5):111576. doi: 10.1016/j.celrep.2022.111576
  • Hubert T, Vandekerckhove J, Gettemans J. Exo70-mediated recruitment of nucleoporin Nup62 at the leading edge of migrating cells is required for cell migration. Traffic. 2009;10(9):1257–1271. doi: 10.1111/j.1600-0854.2009.00940.x
  • Joseph J, Dasso M. The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett. 2008;582(2):190–196. doi: 10.1016/j.febslet.2007.11.087
  • Makise M, Uchimura R, Higashi K, et al. Overexpression of the nucleoporin Nup88 stimulates migration and invasion of HeLa cells. Histochem Cell Biol. 2021;156(5):409–421. doi: 10.1007/s00418-021-02020-w
  • Nataraj NB, Noronha A, Lee JS, et al. Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Rep. 2022;38(8):110418. doi: 10.1016/j.celrep.2022.110418
  • Kirsh O, Seeler JS, Pichler A, et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 2002;21(11):2682–2691. doi: 10.1093/emboj/21.11.2682
  • Gloerich M, Vliem MJ, Prummel E, et al. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. J Cell Bio. 2011;193(6):1009–1020. doi: 10.1083/jcb.201011126
  • Faria AM, Levay A, Wang Y, et al. The nucleoporin Nup96 is required for proper expression of interferon-regulated proteins and functions. Immunity. 2006;24(3):295–304. doi: 10.1016/j.immuni.2006.01.014
  • Monwan W, Kawasaki T, Hasan MZ, et al. Identification of nucleoporin 93 (Nup93) that mediates antiviral innate immune responses. Biochem Biophys Res Commun. 2020;521(4):1077–1082. doi: 10.1016/j.bbrc.2019.11.035
  • Funasaka T, Tsuka E, Wong RW. Regulation of autophagy by nucleoporin Tpr. Sci Rep. 2012;2(1):878. doi: 10.1038/srep00878
  • Wang SM, Wu H-E, Yasui Y, et al. Nucleoporin POM121 signals TFEB-mediated autophagy via activation of SIGMAR1/sigma-1 receptor chaperone by pridopidine. Autophagy. 2023;19(1):126–151. doi: 10.1080/15548627.2022.2063003
  • Chou YY, Upadhyayula S, Houser J, et al. Inherited nuclear pore substructures template post-mitotic pore assembly. Dev Cell. 2021;56(12):1786–1803.e1789. doi: 10.1016/j.devcel.2021.05.015
  • Kutay U, Jühlen R, Antonin W. Mitotic disassembly and reassembly of nuclear pore complexes. Trends Cell Biol. 2021;31(12):1019–1033. doi: 10.1016/j.tcb.2021.06.011
  • Otsuka S, Tempkin JOB, Zhang W, et al. A quantitative map of nuclear pore assembly reveals two distinct mechanisms. Nature. 2023;613(7944):575–581. doi: 10.1038/s41586-022-05528-w
  • Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature. 2008;454(7208):1088–1095. doi: 10.1038/nature07195
  • Miller SB, Ho C-T, Winkler J, et al. Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J. 2015;34(6):778–797. doi: 10.15252/embj.201489524
  • Koch BA, Staley E, Jin H, et al. The ESCRT-III complex is required for nuclear pore complex sequestration and regulates gamete replicative lifespan in budding yeast meiosis. Nucleus. 2020;11(1):219–236. doi: 10.1080/19491034.2020.1812872
  • Rujano MA, Bosveld F, Salomons FA, et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 2006;4(12):e417. doi: 10.1371/journal.pbio.0040417
  • Toyama BH, Arrojo e Drigo R, Lev-Ram V, et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J Cell Bio. 2019;218(2):433–444. doi: 10.1083/jcb.201809123
  • Dultz E, Wojtynek M, Medalia O, et al. The nuclear pore complex: birth, life, and death of a cellular behemoth. Cells. 2022;11(9):1456. doi: 10.3390/cells11091456
  • Kuiper EFE, Gallardo P, Bergsma T, et al. The chaperone DNAJB6 surveils FG-nucleoporins and is required for interphase nuclear pore complex biogenesis. Nat Cell Biol. 2022;24(11):1584–1594. doi: 10.1038/s41556-022-01010-x
  • Goodchild RE, Kim CE, Dauer WT. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron. 2005;48(6):923–932. doi: 10.1016/j.neuron.2005.11.010
  • Rampello AJ, Laudermilch E, Vishnoi N, et al. Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of MLF2. J Cell Bio. 2020;219(6). doi: 10.1083/jcb.201910185
  • Lowe AR, Tang JH, Yassif J, et al. Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner. Elife. 2015;4. doi: 10.7554/eLife.04052
  • Thaller DJ, Allegretti M, Borah S, et al. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. Elife. 2019;8. doi: 10.7554/eLife.45284
  • Webster BM, Colombi P, Jäger J, et al. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell. 2014;159(2):388–401. doi: 10.1016/j.cell.2014.09.012
  • Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet. 2012;3:222. doi:10.3389/fgene.2012.00222
  • Toyama BH, Savas J, Park S, et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. 2013;154(5):971–982. doi: 10.1016/j.cell.2013.07.037
  • Hakhverdyan Z, Molloy KR, Keegan S, et al. Dissecting the structural dynamics of the nuclear pore complex. Mol Cell. 2021;81(1):153–165.e157. doi: 10.1016/j.molcel.2020.11.032
  • Zhang Y, Wu KM, Yang L, et al. Tauopathies: new perspectives and challenges. Mol Neurodegener. 2022;17(1):28. doi: 10.1186/s13024-022-00533-z
  • Paonessa F, Evans LD, Solanki R, et al. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Rep. 2019;26(3):582–593.e585. doi: 10.1016/j.celrep.2018.12.085
  • Candia RF, Cohen LS, Morozova V, et al. Importin-Mediated pathological tau nuclear translocation causes disruption of the nuclear lamina, TDP-43 mislocalization and cell death. Front Mol Neurosci. 2022;15:888420. doi:10.3389/fnmol.2022.888420
  • Wang H, Wang R, Xu S, et al. Transcription factor EB is selectively reduced in the nuclear fractions of Alzheimer’s and amyotrophic lateral sclerosis brains. Neurosci J. 2016;2016:4732837. doi:10.1155/2016/4732837
  • Montalbano M, McAllen S, Puangmalai N, et al. RNA-binding proteins Musashi and tau soluble aggregates initiate nuclear dysfunction. Nat Commun. 2020;11(1):4305. doi: 10.1038/s41467-020-18022-6
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci. 2007;8(7):499–509. doi: 10.1038/nrn2168
  • Barucker C, Harmeier A, Weiske J, et al. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription. J Biol Chem. 2014;289(29):20182–20191. doi: 10.1074/jbc.M114.564690
  • Bailey JA, Maloney B, Ge YW, et al. Functional activity of the novel Alzheimer’s amyloid β-peptide interacting domain (AβID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene. 2011;488:13–22. doi:10.1016/j.gene.2011.06.017
  • Gezen-Ak D, Atasoy IL, Candaş E, et al. Vitamin D receptor regulates amyloid beta 1–42 production with protein disulfide isomerase A3. ACS Chem Neurosci. 2017;8(10):2335–2346. doi: 10.1021/acschemneuro.7b00245
  • Pryor NE, Moss MA, Hestekin CN. Unraveling the early events of amyloid-β protein (Aβ) aggregation: techniques for the determination of Aβ aggregate size. Int J Mol Sci. 2012;13(3):3038–3072. doi: 10.3390/ijms13033038
  • Kouli A, Torsney KM, Kuan WL. Chapter 1: Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. Parkinson’s disease: pathogenesis and clinical aspect. Stoker, TB, and Greenland JC, editors. Brisbane, Australia: Codon Publications; 2018. p. 3–26.
  • Xia Q, Liao L, Cheng D, et al. Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci. 2008;13 :3850–3856. doi: 10.2741/2973
  • McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25:24–34. doi:10.1111/ene.13413
  • Suhr ST, Senut M-C, Whitelegge JP, et al. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Bio. 2001;153(2):283–294. doi: 10.1083/jcb.153.2.283
  • Liu KY, Shyu YC, Barbaro BA, et al. Disruption of the nuclear membrane by perinuclear inclusions of mutant huntingtin causes cell-cycle re-entry and striatal cell death in mouse and cell models of Huntington’s disease. Hum Mol Genet. 2015;24:1602–1616. doi: 10.1093/hmg/ddu574
  • Desmond CR, Atwal RS, Xia J, et al. Identification of a karyopherin β1/β2 Proline-Tyrosine nuclear localization signal in huntingtin protein. J Biol Chem. 2012;287(47):39626–39633. doi: 10.1074/jbc.M112.412379
  • Shirasaki DI, Greiner E, Al-Ramahi I, et al. Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron. 2012;75(1):41–57. doi: 10.1016/j.neuron.2012.05.024
  • Langfelder P, Cantle JP, Chatzopoulou D, et al. Integrated genomics and proteomics define huntingtin CAG length–dependent networks in mice. Nat Neurosci. 2016;19(4):623–633. doi: 10.1038/nn.4256
  • Hofweber M, Hutten S, Bourgeois B, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell. 2018;173(3):706–719 e713. doi: 10.1016/j.cell.2018.03.004
  • Qamar S, Wang G, Randle SJ, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell. 2018;173(3):720–734 e715. doi: 10.1016/j.cell.2018.03.056
  • Baade I, Hutten S, Sternburg EL, et al. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J Biol Chem. 2021;296:100659. doi: 10.1016/j.jbc.2021.100659
  • Beijer D, Kim HJ, Guo L, et al. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight. 2021;6(14). doi: 10.1172/jci.insight.148363
  • Fare CM, Rhine K, Lam A, et al. A minimal construct of nuclear-import receptor karyopherin-β2 defines the regions critical for chaperone and disaggregation activity. J Biol Chem. 2022;102806(2):102806. doi: 10.1016/j.jbc.2022.102806
  • Kim HJ, Mohassel P, Donkervoort S, et al. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun. 2022;13(1):2306. doi: 10.1038/s41467-022-30015-1
  • Woerner AC, Frottin F, Hornburg D, et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science. 2016;351(6269):173–176. doi: 10.1126/science.aad2033
  • Cook CN, Wu Y, Odeh HM, et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci Transl Med. 2020;12(559). doi: 10.1126/scitranslmed.abb3774
  • de Mezer M, Wojciechowska M, Napierala M, et al. Mutant CAG repeats of huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res. 2011;39(9):3852–3863. doi: 10.1093/nar/gkq1323
  • Bañez-Coronel M, et al. A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet. 2012;8:e1002481. doi: 10.1371/journal.pgen.1002481
  • Rué L, Bañez-Coronel M, Creus-Muncunill J, et al. Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels. J Clin Invest. 2016;126(11):4319–4330. doi: 10.1172/JCI83185
  • Ly S, Didiot M-C, Ferguson CM, et al. Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains. Brain Commun. 2022;4:fcac248. doi: 10.1093/braincomms/fcac248
  • Morelli KH, Wu Q, Gosztyla ML, et al. An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models. Nat Neurosci. 2023;26(1):27–38. doi: 10.1038/s41593-022-01207-1
  • Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79(3):416–438. doi: 10.1016/j.neuron.2013.07.033
  • van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390(10107):2084–2098. doi: 10.1016/S0140-6736(17)31287-4
  • Cividini C, Basaia S, Spinelli EG, et al. Amyotrophic lateral sclerosis–frontotemporal dementia. Neurology. 2021;98(4):e402–415. doi: 10.1212/WNL.0000000000013123
  • Olney NT, Spina S, Miller BL. Frontotemporal Dementia. Neurol Clin. 2017;35(2):339–374. doi: 10.1016/j.ncl.2017.01.008
  • Ferrari R, Kapogiannis D, Huey ED, et al. FTD and ALS: a tale of two diseases. Curr Alzheimer Res. 2011;8(3):273–294. doi: 10.2174/156720511795563700
  • Mackenzie IR, Feldman HH. Ubiquitin immunohistochemistry suggests classic motor neuron disease, motor neuron disease with dementia, and frontotemporal dementia of the motor neuron disease type represent a clinicopathologic spectrum. J Neuropathol Exp Neurol. 2005;64(8):730–739. doi: 10.1097/01.jnen.0000174335.27708.0a
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–133. doi: 10.1126/science.1134108
  • Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–611. doi: 10.1016/j.bbrc.2006.10.093
  • Cairns NJ, Neumann M, Bigio EH, et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol. 2007;171(1):227–240. doi: 10.2353/ajpath.2007.070182
  • Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–1672. doi: 10.1126/science.1154584
  • Purice MD, Taylor JP. Linking hnRNP function to ALS and FTD pathology. Front Neurosci. 2018;12:326. doi:10.3389/fnins.2018.00326
  • Neumann M, Rademakers R, Roeber S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(11):2922–2931. doi: 10.1093/brain/awp214
  • Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9(10):995–1007. doi: 10.1016/S1474-4422(10)70195-2
  • Gitler AD, Shorter J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion. 2011;5(3):179–187. doi: 10.4161/pri.5.3.17230
  • Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci, USA. 2011;108(52):20881–20890. doi: 10.1073/pnas.1109434108
  • Sun Z, Diaz Z, Fang X, et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 2011;9(4):e1000614. doi: 10.1371/journal.pbio.1000614
  • Couthouis J, Hart MP, Erion R, et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(13):2899–2911. doi: 10.1093/hmg/dds116
  • Daigle JG, Lanson NA, Smith RB, et al. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet. 2013;22(6):1193–1205. doi: 10.1093/hmg/dds526
  • Harrison AF, Shorter J. RNA-binding proteins with prion-like domains in health and disease. Biochem J. 2017;474(8):1417–1438. doi: 10.1042/BCJ20160499
  • DeJesus-Hernandez M, Mackenzie I, Boeve B, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–256. doi: 10.1016/j.neuron.2011.09.011
  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–268. doi: 10.1016/j.neuron.2011.09.010
  • Frottin F, Pérez-Berlanga M, Hartl FU, et al. Multiple pathways of toxicity induced by C9orf72 dipeptide repeat aggregates and G4C2 RNA in a cellular model. Elife. 2021;10. doi: 10.7554/eLife.62718
  • Jovicic A, Mertens J, Boeynaems S, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci. 2015;18(9):1226–1229. doi: 10.1038/nn.4085
  • Freibaum BD, Lu Y, Lopez-Gonzalez R, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015;525(7567):129–133. doi: 10.1038/nature14974
  • Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol. 2018;14(9):544–558. doi: 10.1038/s41582-018-0047-2
  • Shi Y, Lin S, Staats KA, et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med. 2018;24(3):313–325. doi: 10.1038/nm.4490
  • Li J, Lim RG, Kaye JA, et al. An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. iScience. 2021;24(11):103221. doi: 10.1016/j.isci.2021.103221
  • Byrne S, Elamin M, Bede P, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 2012;11(3):232–240. doi: 10.1016/S1474-4422(12)70014-5
  • Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11(4):323–330. doi: 10.1016/S1474-4422(12)70043-1
  • Umoh ME, Fournier C, Li Y, et al. Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population. Neurology. 2016;87(10):1024–1030. doi: 10.1212/WNL.0000000000003067
  • King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012;1462:61–80. doi:10.1016/j.brainres.2012.01.016
  • Donnelly CJ, Zhang P-W, Pham J, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–428. doi: 10.1016/j.neuron.2013.10.015
  • Lee YB, Chen H-J, Peres J, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013;5(5):1178–1186. doi: 10.1016/j.celrep.2013.10.049
  • Mori K, Lammich S, Mackenzie IRA, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 2013;125(3):413–423. doi: 10.1007/s00401-013-1088-7
  • Conlon EG, Lu L, Sharma A, et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. Elife. 2016;5. doi: 10.7554/eLife.17820
  • Lee KH, Zhang P, Kim HJ, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167(3):774–788.e717. doi: 10.1016/j.cell.2016.10.002
  • Boeynaems S, Bogaert E, Kovacs D, et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell. 2017;65(6):1044–1055.e1045. doi: 10.1016/j.molcel.2017.02.013
  • Yin S, Lopez-Gonzalez R, Kunz RC, et al. Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause Mis-splicing in ALS/FTD patients. Cell Rep. 2017;19(11):2244–2256. doi: 10.1016/j.celrep.2017.05.056
  • Lu L, Zheng L, Viera L, et al. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci. 2007;27(30):7929–7938. doi: 10.1523/JNEUROSCI.1877-07.2007
  • Lu L, Wang S, Zheng L, et al. Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor. J Biol Chem. 2009;284(49):33989–33998. doi: 10.1074/jbc.M109.067918
  • Da Ros M, Deol HK, Savard A, et al. Wild-type and mutant SOD1 localizes to RNA-rich structures in cells and mice but does not bind RNA. J Neurochem. 2021;156(4):524–538. doi: 10.1111/jnc.15126
  • Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;364(6435):362. doi: 10.1038/364362c0
  • Chen H, Qian K, Du Z, et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell. 2014;14(6):796–809. doi: 10.1016/j.stem.2014.02.004
  • Menzies FM, Grierson AJ, Cookson MR, et al. Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem. 2002;82(5):1118–1128. doi: 10.1046/j.1471-4159.2002.01045.x
  • Winklhofer KF, Tatzelt J, Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 2008;27(2):336–349. doi: 10.1038/sj.emboj.7601930
  • Blokhuis AM, Groen EJ, Koppers M, et al. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125(6):777–794. doi: 10.1007/s00401-013-1125-6
  • Kim G, Gautier O, Tassoni-Tsuchida E, et al. ALS genetics: gains, losses, and implications for future therapies. Neuron. 2020;108(5):822–842. doi: 10.1016/j.neuron.2020.08.022
  • Xue YC, Ng CS, Xiang P, et al. Dysregulation of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Front Mol Neurosci. 2020;13:78. doi: 10.3389/fnmol.2020.00078
  • Zhou Y, Liu S, Liu G, et al. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 2013;9(10):e1003895. doi: 10.1371/journal.pgen.1003895
  • Coady TH, Manley JL. ALS mutations in TLS/FUS disrupt target gene expression. Genes Dev. 2015;29(16):1696–1706. doi: 10.1101/gad.267286.115
  • Hans F, Glasebach H, Kahle PJ. Multiple distinct pathways lead to hyperubiquitylated insoluble TDP-43 protein independent of its translocation into stress granules. J Biol Chem. 2020;295(3):673–689. doi: 10.1016/S0021-9258(17)49926-1
  • Humphrey J, Birsa N, Milioto C, et al. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res. 2020;48(12):6889–6905. doi: 10.1093/nar/gkaa410
  • Brown AL, Wilkins OG, Keuss MJ, et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022;603(7899):131–137. doi: 10.1038/s41586-022-04436-3
  • Ma XR, Prudencio M, Koike Y, et al. TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A. Nature. 2022;603(7899):124–130. doi: 10.1038/s41586-022-04424-7
  • Koike Y, Pickles S, Estades Ayuso V, et al. TDP-43 and other hnRNPs regulate cryptic exon inclusion of a key ALS/FTD risk gene, UNC13A. PLoS Biol. 2023;21(3):e3002028. doi: 10.1371/journal.pbio.3002028
  • Scekic-Zahirovic J, Sendscheid O, El Oussini H, et al. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J. 2016;35(10):1077–1097. doi: 10.15252/embj.201592559
  • Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022;28(1):104–116. doi: 10.1038/s41591-021-01615-z
  • An H, Litscher G, Watanabe N, et al. ALS-linked cytoplasmic FUS assemblies are compositionally different from physiological stress granules and sequester hnRNPA3, a novel modifier of FUS toxicity. Neurobiol Dis. 2022;162:105585. doi: 10.1016/j.nbd.2021.105585
  • Jun MH, Ryu H-H, Jun Y-W, et al. Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS mutant R521C-positive aggregates contributes to neurite degeneration upon oxidative stress. Sci Rep. 2017;7(1):40474. doi: 10.1038/srep40474
  • Tsai YL, Coady TH, Lu L, et al. ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes Dev. 2020;34(11–12):785–805. doi: 10.1101/gad.335836.119
  • Nag N, Tripathi T. Mislocalization of Nup62 contributes to TDP-43 proteinopathy in ALS/FTLD. ACS Chem Neurosci. 2022;13(17):2544–2546. doi: 10.1021/acschemneuro.2c00480
  • Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–1211. doi: 10.1126/science.1165942
  • Huang EJ, Zhang J, Geser F, et al. Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol. 2010;20(6):1069–1076. doi: 10.1111/j.1750-3639.2010.00413.x
  • Keller BA, Volkening K, Droppelmann CA, et al. Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol. 2012;124(5):733–747. doi: 10.1007/s00401-012-1035-z
  • Ader C, Frey S, Maas W, et al. Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci U S A. 2010;107(14):6281–6285. doi: 10.1073/pnas.0910163107
  • Shi KY, Mori E, Nizami ZF, et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc Natl Acad Sci U S A. 2017;114(7):E1111–E1117. doi: 10.1073/pnas.1620293114
  • Zhang YJ, Gendron TF, Grima JC, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci. 2016;19(5):668–677. doi: 10.1038/nn.4272
  • Lin Y, Mori E, Kato M, et al. Toxic PR Poly-Dipeptides Encoded by the C9orf72 repeat expansion target LC domain polymers. Cell. 2016;167(3):789–802.e712. doi: 10.1016/j.cell.2016.10.003
  • McGoldrick P, Lau A, You Z, et al. Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse importin β-1 granules. Cell Rep. 2023;42:112134. doi:10.1016/j.celrep.2023.112134
  • Zhong Y, Wang J, Henderson MJ, et al. Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus. Elife. 2017;6. doi: 10.7554/eLife.23759
  • Gertz B, Wong M, Martin LJ. Nuclear localization of human SOD1 and mutant SOD1-specific disruption of survival motor neuron protein complex in transgenic amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol. 2012;71(2):162–177. doi: 10.1097/NEN.0b013e318244b635
  • Shang J, Yamashita T, Nakano Y, et al. Aberrant distributions of nuclear pore complex proteins in ALS mice and ALS patients. Neuroscience. 2017;350:158–168. doi: 10.1016/j.neuroscience.2017.03.024
  • Nonaka T, Masuda-Suzukake M, Hosokawa M, et al. C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43. Hum Mol Genet. 2018;27(15):2658–2670. doi: 10.1093/hmg/ddy174
  • Niaki AG, Sarkar J, Cai X, et al. Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-Linked FUS mutations. Mol Cell. 2020;77(1):82–94 e84. doi: 10.1016/j.molcel.2019.09.022
  • Gonzalez A, Mannen T, Çağatay T, et al. Mechanism of karyopherin-β2 binding and nuclear import of ALS variants FUS(P525L) and FUS(R495X). Sci Rep. 2021;11(1):3754. doi: 10.1038/s41598-021-83196-y
  • Conte A, Lattante S, Zollino M, et al. P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis. Neuromuscul Disord. 2012;22(1):73–75. doi: 10.1016/j.nmd.2011.08.003
  • Sharma A, Lyashchenko AK, Lu L, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7(1):10465. doi: 10.1038/ncomms10465
  • Corcia P, Danel V, Lacour A, et al. A novel mutation of the C-terminal amino acid of FUS (Y526C) strengthens FUS gene as the most frequent genetic factor in aggressive juvenile ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(3–4):298–301. doi: 10.1080/21678421.2016.1265564
  • Zhou B, Wang H, Cai Y, et al. FUS P525L mutation causing amyotrophic lateral sclerosis and movement disorders. Brain Behav. 2020;10(6):e01625. doi: 10.1002/brb3.1625
  • Rothstein JD, Warlick C, Coyne AN. Highly variable molecular signatures of TDP-43 loss of function are associated with nuclear pore complex injury in a population study of sporadic ALS patient iPsns. bioRxiv. 2023.
  • Megat S, Mora N, Sanogo J, et al. Integrative genetic analysis illuminates ALS heritability and identifies risk genes. Nat Commun. 2023;14(1):342. doi: 10.1038/s41467-022-35724-1
  • Kaneb HM, Folkmann AW, Belzil VV, et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum Mol Genet. 2015;24(5):1363–1373. doi: 10.1093/hmg/ddu545
  • van Rheenen W, van der Spek RAA, Bakker MK, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet. 2021;53(12):1636–1648. doi: 10.1038/s41588-021-00973-1
  • Workman MJ, Lim RG, Wu J, et al. Large-scale differentiation of iPSC-derived motor neurons from ALS and control subjects. Neuron. 2023;111(8):1191–1204.e1195. doi: 10.1016/j.neuron.2023.01.010
  • Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488(7412):499–503. doi: 10.1038/nature11280
  • Smith BN, Ticozzi N, Fallini C, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. 2014;84(2):324–331. doi: 10.1016/j.neuron.2014.09.027
  • Nicolas A, Kenna KP, Renton AE, et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron. 2018;97(6):1268–1283.e6. doi: 10.1016/j.neuron.2018.02.027
  • Baron DM, Fenton AR, Saez-Atienzar S, et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep. 2022;39(1):110598. doi: 10.1016/j.celrep.2022.110598
  • Tran D, Chalhoub A, Schooley A, et al. A mutation in VAPB that causes amyotrophic lateral sclerosis also causes a nuclear envelope defect. J Cell Sci. 2012;125:2831–2836. doi:10.1242/jcs.102111
  • James C, Müller M, Goldberg MW, et al. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. J Biol Chem. 2019;294(44):16241–16254. doi: 10.1074/jbc.RA118.007283
  • Tullio-Pelet A, Salomon R, Hadj-Rabia S, et al. Mutant WD-repeat protein in triple-A syndrome. Nat Genet. 2000;26(3):332–335. doi: 10.1038/81642
  • Handschug K, Sperling S, Yoon SJ, et al. Triple a syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum Mol Genet. 2001;10(3):283–290. doi: 10.1093/hmg/10.3.283
  • Huebner A, Kaindl AM, Knobeloch KP, et al. The triple a syndrome is due to mutations in ALADIN, a novel member of the nuclear pore complex. Endocr Res. 2004;30(4):891–899. doi: 10.1081/ERC-200044138
  • Cronshaw JM, Matunis MJ. The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc Natl Acad Sci U S A. 2003;100(10):5823–5827. doi: 10.1073/pnas.1031047100
  • Nousiainen HO, Kestilä M, Pakkasjärvi N, et al. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat Genet. 2008;40(2):155–157. doi: 10.1038/ng.2007.65
  • Paakkola T, Vuopala K, Kokkonen H, et al. A homozygous I684T in GLE1 as a novel cause of arthrogryposis and motor neuron loss. Clin Genet. 2018;93(1):173–177. doi: 10.1111/cge.13086
  • Smith C, Parboosingh JS, Boycott KM, et al. Expansion of the GLE1-associated arthrogryposis multiplex congenita clinical spectrum. Clin Genet. 2017;91(3):426–430. doi: 10.1111/cge.12876
  • Bonnin E, Cabochette P, Filosa A, et al. Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet. 2018;14(12):e1007845. doi: 10.1371/journal.pgen.1007845
  • Shamseldin HE, Makhseed N, Ibrahim N, et al. NUP214 deficiency causes severe encephalopathy and microcephaly in humans. Hum Genet. 2019;138(3):221–229. doi: 10.1007/s00439-019-01979-w
  • Fichtman B, Harel T, Biran N, et al. Pathogenic variants in NUP214 cause “plugged” nuclear pore channels and acute febrile encephalopathy. Am J Hum Genet. 2019;105(1):48–64. doi: 10.1016/j.ajhg.2019.05.003
  • Farooqui S, Narayanan DL, Mascarenhas S, et al. c.202_204del in NUP214 causes late onset form of febrile encephalopathy. Am J Med Genet A. 2024. doi:10.1002/ajmg.a.63529.
  • Neilson DE, Adams MD, Orr CMD, et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009;84(1):44–51. doi: 10.1016/j.ajhg.2008.12.009
  • Shibata A, Kasai M, Hoshino A, et al. RANBP2 mutation causing autosomal dominant acute necrotizing encephalopathy attenuates its interaction with COX11. Neurosci Lett. 2021;763:136173. doi:10.1016/j.neulet.2021.136173
  • Deshmukh P, Singh A, Khuperkar D, et al. Acute necrotizing encephalopathy-linked mutations in Nup358 impair interaction of Nup358 with TNRC6/GW182 and miRNA function. Biochem Biophys Res Commun. 2021;559:230–237. doi:10.1016/j.bbrc.2021.04.027
  • Braun DA, Lovric S, Schapiro D, et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J Clin Invest. 2018;128(10):4313–4328. doi: 10.1172/JCI98688
  • Miyake N, Tsukaguchi H, Koshimizu E, et al. Biallelic mutations in nuclear pore complex subunit nup107 cause early-childhood-onset steroid-resistant nephrotic syndrome. Am J Hum Genet. 2015;97(4):555–566. doi: 10.1016/j.ajhg.2015.08.013
  • Rosti RO, Sotak BN, Bielas SL, et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet. 2017;54(6):399–403. doi: 10.1136/jmedgenet-2016-104237
  • Zhao F, Zhu J-Y, Richman A, et al. Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome. J Am Soc Nephrol. 2019;30(5):840–853. doi: 10.1681/ASN.2018080786
  • Braun DA, Sadowski CE, Kohl S, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;48(4):457–465. doi: 10.1038/ng.3512
  • Zhang X, Chen S, Yoo S, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell. 2008;135(6):1017–1027. doi: 10.1016/j.cell.2008.10.022
  • Sandestig A, Engström K, Pepler A, et al. Biallelic loss of function may underlie a new syndrome: nucleoporin 188 insufficiency syndrome? Mol Syndromol. 2020;10(6):313–319. doi: 10.1159/000504818
  • Muir AM, Cohen JL, Sheppard SE, et al. Bi-allelic loss-of-function variants in NUP188 cause a recognizable syndrome characterized by neurologic, ocular, and cardiac abnormalities. Am J Hum Genet. 2020;106(5):623–631. doi: 10.1016/j.ajhg.2020.03.009
  • Harrer P, Schalk A, Shimura M, et al. Recessive NUP54 variants underlie early-onset dystonia with striatal lesions. Ann Neurol. 2023;93(2):330–335. doi: 10.1002/ana.26544
  • Basel-Vanagaite L, Muncher L, Straussberg R, et al. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol. 2006;60(2):214–222. doi: 10.1002/ana.20902
  • Van Bergen NJ, Bell KM, Carey K, et al. Pathogenic variants in nucleoporin TPR (translocated promoter region, nuclear basket protein) cause severe intellectual disability in humans. Hum Mol Genet. 2022;31(3):362–375. doi: 10.1093/hmg/ddab248
  • Strauss M, Koehler K, Krumbholz M, et al. Triple a syndrome mimicking ALS. Amyotroph Lateral Scler. 2008;9(5):315–317. doi: 10.1080/17482960802259016
  • Vallet AE, Verschueren A, Petiot P, et al. Neurological features in adult Triple-A (Allgrove) syndrome. J Neurol. 2012;259(1):39–46. doi: 10.1007/s00415-011-6115-9
  • Vigano’ M, Mantero V, Basilico P, et al. Don’t forget Allgrove syndrome in adult patients as a bulbar-ALS mimicker. Neurol Sci. 2023;44:3703–3705. doi: 10.1007/s10072-023-06961-z.
  • Strauss KA, Gonzaga-Jauregui C, Brigatti KW, et al. Genomic diagnostics within a medically underserved population: efficacy and implications. Genet Med. 2018;20(1):31–41. doi: 10.1038/gim.2017.76
  • Consortium U, Martin M-J, Orchard S. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–D531. doi: 10.1093/nar/gkac1052
  • Tarazón E, Rivera M, Roselló-Lletí E, et al. Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes. PLoS One. 2012;7(11):e48957. doi: 10.1371/journal.pone.0048957
  • Lai TH, Wu Y-Y, Wang Y-Y, et al. SEPT12–NDC1 Complexes Are Required for Mammalian Spermiogenesis. Int J Mol Sci. 2016;17(11):1911. doi: 10.3390/ijms17111911
  • Cipollini M, Luisi S, Piomboni P, et al. Functional polymorphism within NUP210 encoding for nucleoporin GP210 is associated with the risk of endometriosis. Fertil Steril. 2019;112(2):343–352.e341. doi: 10.1016/j.fertnstert.2019.04.011
  • Qiao W, Han Y, Jin W, et al. Overexpression and biological function of TMEM48 in non-small cell lung carcinoma. Tumour Biol. 2016;37(2):2575–2586. doi: 10.1007/s13277-015-4014-x
  • Rodriguez-Bravo V, Pippa R, Song W-M, et al. Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import. Cell. 2018;174(5):1200–1215.e1220. doi: 10.1016/j.cell.2018.07.015
  • Gu Q, Hou W, Liu H, et al. NUP210 and MicroRNA-22 modulate fas to elicit HeLa cell cycle arrest. Yonsei Med J. 2020;61(5):371–381. doi: 10.3349/ymj.2020.61.5.371
  • Guan L, Zhang L, Wang T, et al. POM121 promotes proliferation and metastasis in non-small-cell lung cancer through TGF-β/SMAD and PI3K/AKT pathways. Cancer Biomark. 2021;32(3):293–302. doi: 10.3233/CBM-210001
  • Hong SH, Son KH, Ha SY, et al. Nucleoporin 210 serves a key scaffold for SMARCB1 in liver cancer. Cancer Res. 2021;81(2):356–370. doi: 10.1158/0008-5472.CAN-20-0568
  • Bindra D, Mishra RK. In pursuit of distinctiveness: transmembrane nucleoporins and their disease associations. Front Oncol. 2021;11:784319. doi:10.3389/fonc.2021.784319
  • Wong X, Stewart CL. The laminopathies and the insights they provide into the structural and functional organization of the nucleus. Annu Rev Genom Hum Genet. 2020;21(1):263–288. doi: 10.1146/annurev-genom-121219-083616
  • Han M, Zhao M, Cheng C, et al. Lamin a mutation impairs interaction with nucleoporin NUP155 and disrupts nucleocytoplasmic transport in atrial fibrillation. Hum Mutat. 2019;40(3):310–325. doi: 10.1002/humu.23691
  • Lussi YC, Hügi I, Laurell E, et al. The nucleoporin Nup88 is interacting with nuclear lamin A. Mol Biol Cell. 2011;22(7):1080–1090. doi: 10.1091/mbc.e10-05-0463
  • Bechert K, Lagos-Quintana M, Harborth J, et al. Effects of expressing lamin A mutant protein causing Emery-Dreifuss muscular dystrophy and familial partial lipodystrophy in HeLa cells. Exp Cell Res. 2003;286(1):75–86. doi: 10.1016/S0014-4827(03)00104-6
  • Dutta S, Das JK, Maganti L, et al. Skeletal muscle dystrophy mutant of lamin A alters the structure and dynamics of the Ig fold domain. Sci Rep. 2018;8(1):13793. doi: 10.1038/s41598-018-32227-2
  • Méjat A, Misteli T. LINC complexes in health and disease. Nucleus. 2010;1(1):40–52. doi: 10.4161/nucl.1.1.10530
  • Liu Q, Pante N, Misteli T, et al. Functional association of Sun1 with nuclear pore complexes. J Cell Bio. 2007;178(5):785–798. doi: 10.1083/jcb.200704108
  • Smith MA, Blankman E, Jensen CC, et al. Nuclear pore complexes concentrate on Actin/LINC/Lamin nuclear lines in response to mechanical stress in a SUN1 dependent manner. Heliyon. 2022;8(12):e12147. doi: 10.1016/j.heliyon.2022.e12147
  • Meinke P, Mattioli E, Haque F, et al. Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet. 2014;10(9):e1004605. doi: 10.1371/journal.pgen.1004605
  • Li P, Meinke P, Huong LT, et al. Contribution of SUN1 mutations to the pathomechanism in muscular dystrophies. Hum Mutat. 2014;35(4):452–461. doi: 10.1002/humu.22504
  • Chen CY, Chi Y-H, Mutalif R, et al. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell. 2012;149(3):565–577. doi: 10.1016/j.cell.2012.01.059
  • Arii J, Maeda F, Maruzuru Y, et al. ESCRT-III controls nuclear envelope deformation induced by progerin. Sci Rep. 2020;10(1):18877. doi: 10.1038/s41598-020-75852-6
  • Shankar R, Lettman MM, Whisler W, et al. The ESCRT machinery directs quality control over inner nuclear membrane architecture. Cell Rep. 2022;38(3):110263. doi: 10.1016/j.celrep.2021.110263
  • Wu X, Kasper LH, Mantcheva RT, et al. Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci U S A. 2001;98(6):3191–3196. doi: 10.1073/pnas.051631598
  • Jevtić P, Schibler AC, Wesley CC, et al. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep. 2019;20(6). doi: 10.15252/embr.201847283
  • Sakuma S, Zhu EY, Raices M, et al. Loss of Nup210 results in muscle repair delays and age-associated alterations in muscle integrity. Life Sci Alliance. 2022;5(3):e202101216. doi: 10.26508/lsa.202101216
  • Cho KI, Yoon D, Qiu S, et al. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech. 2017;10(5):559–579. doi: 10.1242/dmm.027730
  • Zimmerli CE, Allegretti M, Rantos V, et al. Nuclear pores dilate and constrict in cellulo. Science. 2021;374(6573):eabd9776. doi: 10.1126/science.abd9776
  • Xu S, Zhang X, Liu C, et al. Role of mitochondria in neurodegenerative diseases: from an epigenetic perspective. Front Cell Dev Biol. 2021;9:688789. doi: 10.3389/fcell.2021.688789
  • Panagaki D, Croft JT, Keuenhof K, et al. Nuclear envelope budding is a response to cellular stress. Proc Natl Acad Sci, USA. 2021;118(30). doi: 10.1073/pnas.2020997118
  • Donnaloja F, Jacchetti E, Soncini M, et al. Mechanosensing at the nuclear envelope by nuclear pore complex stretch activation and its effect in physiology and pathology. Front Physiol. 2019;10:896. doi:10.3389/fphys.2019.00896
  • Hoffman LM, Smith MA, Jensen CC, et al. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol Biol Cell. 2020;31(16):1774–1787. doi: 10.1091/mbc.E19-01-0027
  • Goelzer M, Goelzer J, Ferguson ML, et al. Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus. 2021;12(1):90–114. doi: 10.1080/19491034.2021.1962610
  • Hocquemiller M, Giersch L, Audrain M, et al. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478–496. doi: 10.1089/hum.2016.087
  • Au HKE, Isalan M, Mielcarek M. Gene therapy advances: a meta-analysis of AAV usage in clinical settings. Front Med. 2021;8:809118. doi:10.3389/fmed.2021.809118
  • Kuzmin DA, Shutova MV, Johnston NR, et al. The clinical landscape for AAV gene therapies. Nat Rev Drug Discov. 2021;20(3):173–174. doi: 10.1038/d41573-021-00017-7
  • Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29(2):464–488. doi: 10.1016/j.ymthe.2020.12.007
  • Dominguez E, Marais T, Chatauret N, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet. 2011;20(4):681–693. doi: 10.1093/hmg/ddq514
  • Stevens D, Claborn MK, Gildon BL, et al. Onasemnogene Abeparvovec-xioi: gene therapy for spinal muscular atrophy. Ann Pharmacother. 2020;54(10):1001–1009. doi: 10.1177/1060028020914274
  • Huang Q, Chen AT, Chan KY, et al. Targeting AAV vectors to the central nervous system by engineering capsid–receptor interactions that enable crossing of the blood–brain barrier. PLoS Biol. 2023;21(7):e3002112. doi: 10.1371/journal.pbio.3002112
  • Bastos R, Lin A, Enarson M, et al. Targeting and function in mRNA export of nuclear pore complex protein Nup153. J Cell Bio. 1996;134(5):1141–1156. doi: 10.1083/jcb.134.5.1141
  • Boer J, Bonten-Surtel J, Grosveld G. Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol. 1998;18(3):1236–1247. doi: 10.1128/MCB.18.3.1236
  • Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18(1):80–86. doi: 10.1038/mt.2009.255
  • Marrone L, Marchi PM, Azzouz M. Circumventing the packaging limit of AAV-mediated gene replacement therapy for neurological disorders. Expert Opin Biol Ther. 2022;22(9):1–14. doi: 10.1080/14712598.2022.2012148
  • Nofrini V, Di Giacomo D, Mecucci C. Nucleoporin genes in human diseases. Eur J Hum Genet. 2016;24(10):1388–1395. doi: 10.1038/ejhg.2016.25
  • Talap J, Zhao J, Shen M, et al. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal. 2021;206:114368. doi: 10.1016/j.jpba.2021.114368
  • Ori A, Banterle N, Iskar M, et al. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol. 2013;9(1):648. doi: 10.1038/msb.2013.4
  • Fare CM, Shorter J. (Dis)Solving the problem of aberrant protein states. Dis Model Mech. 2021;14(5). doi: 10.1242/dmm.048983
  • Shorter J. Hsp104: a weapon to combat diverse neurodegenerative disorders. Neurosignals. 2008;16(1):63–74. doi: 10.1159/000109760
  • Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–332. doi: 10.1038/nature10317
  • Ciechanover A, Kwon YT. Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci. 2017;11:185. doi:10.3389/fnins.2017.00185
  • Mann JR, Gleixner AM, Mauna JC, et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron. 2019;102(2):321–338 e328. doi: 10.1016/j.neuron.2019.01.048
  • Takeuchi T, Maeta K, Ding X, et al. Sustained therapeutic benefits by transient reduction of TDP-43 using ENA-modified antisense oligonucleotides in ALS/FTD mice. Mol Ther Nucleic Acids. 2023;31:353–366. doi: 10.1016/j.omtn.2023.01.006
  • McCampbell A, Cole T, Wegener AJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128(8):3558–3567. doi: 10.1172/JCI99081
  • Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022;387(12):1099–1110. doi: 10.1056/NEJMoa2204705
  • Odeh HM, Fare CM, Shorter J. Nuclear-import receptors counter deleterious phase transitions in neurodegenerative disease. J Mol Biol. 2022;434(1):167220. doi: 10.1016/j.jmb.2021.167220
  • Guo L, Fare CM, Shorter J. Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol. 2019;29(4):308–322. doi: 10.1016/j.tcb.2018.12.004
  • Robinson E, Shorter J, Guo L. Karyopherin-β2 inhibits and reverses aggregation and liquid-liquid phase separation of the ALS/FTD-Associated protein FUS. Bio Protoc. 2020;10(16):e3725. doi: 10.21769/BioProtoc.3725
  • Mizuguchi-Hata C, Ogawa Y, Oka M, et al. Quantitative regulation of nuclear pore complex proteins by O-GlcNAcylation. Biochim Biophys Acta. 2013;1833(12):2682–2689. doi: 10.1016/j.bbamcr.2013.06.008
  • Ruba A, Yang W. O-GlcNAc-ylation in the nuclear pore complex. Cell Mol Bioeng. 2016;9(2):227–233. doi: 10.1007/s12195-016-0440-0
  • Zhu Y, Liu T-W, Madden Z, et al. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J Mol Cell Biol. 2016;8(1):2–16. doi: 10.1093/jmcb/mjv033
  • Yoo TY, Mitchison TJ. O-GlcNAc modification of nuclear pore complexes accelerates bidirectional transport. J Cell Bio. 2021;220(7). doi: 10.1083/jcb.202010141
  • Kitchen DB, Decornez H, Furr JR, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–949. doi: 10.1038/nrd1549
  • Leman JK, Weitzner BD, Lewis SM, et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods. 2020;17(7):665–680. doi: 10.1038/s41592-020-0848-2
  • Coyne AN, Rothstein JD. The ESCRT-III protein VPS4, but not CHMP4B or CHMP2B, is pathologically increased in familial and sporadic ALS neuronal nuclei. Acta Neuropathol Commun. 2021;9(1):127. doi: 10.1186/s40478-021-01228-0
  • Parkinson N, Ince PG, Smith MO, et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology. 2006;67(6):1074–1077. doi: 10.1212/01.wnl.0000231510.89311.8b
  • van der Zee J, Urwin H, Engelborghs S, et al. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet. 2008;17(2):313–322. doi: 10.1093/hmg/ddm309
  • Cox LE, Ferraiuolo L, Goodall EF, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One. 2010;5(3):e9872. doi: 10.1371/journal.pone.0009872
  • Isaacs AM, Johannsen P, Holm I, et al. Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res. 2011;8(3):246–251. doi: 10.2174/156720511795563764
  • Clayton EL, Bonnycastle K, Isaacs AM, et al. A novel synaptopathy-defective synaptic vesicle protein trafficking in the mutant CHMP2B mouse model of frontotemporal dementia. J Neurochem. 2022;160(3):412–425. doi: 10.1111/jnc.15551
  • van Blitterswijk M, Vlam L, van Es MA, et al. Genetic overlap between apparently sporadic motor neuron diseases. PloS One. 2012;7(11):e48983. doi: 10.1371/journal.pone.0048983
  • Narain P, Pandey A, Gupta S, et al. Targeted next-generation sequencing reveals novel and rare variants in Indian patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2018;71:.e265.269–.e265.214. doi: 10.1016/j.neurobiolaging.2018.05.012
  • Urwin H, Authier A, Nielsen JE, et al. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet. 2010;19(11):2228–2238. doi: 10.1093/hmg/ddq100
  • Ghazi-Noori S, Froud KE, Mizielinska S, et al. Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain. 2012;135(3):819–832. doi: 10.1093/brain/aws006
  • Clayton EL, Mizielinska S, Edgar JR, et al. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol. 2015;130(4):511–523. doi: 10.1007/s00401-015-1475-3
  • Clayton EL, Milioto C, Muralidharan B, et al. Frontotemporal dementia causative CHMP2B impairs neuronal endolysosomal traffic-rescue by TMEM106B knockdown. Brain. 2018;141(12):3428–3442. doi: 10.1093/brain/awy284
  • Prissette M, Fury W, Koss M, et al. Disruption of nuclear envelope integrity as a possible initiating event in tauopathies. Cell Rep. 2022;40(8):111249. doi: 10.1016/j.celrep.2022.111249
  • Gu M, LaJoie D, Chen OS, et al. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc Natl Acad Sci U S A. 2017;114(11):E2166–E2175. doi: 10.1073/pnas.1613916114
  • Nim S, O’Hara DM, Corbi-Verge C, et al. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson’s disease. Nat Commun. 2023;14(1):2150. doi: 10.1038/s41467-023-37464-2
  • Baron O, Boudi A, Dias C, et al. Stall in canonical autophagy-lysosome pathways prompts nucleophagy-based nuclear breakdown in neurodegeneration. Curr Biol. 2017;27(23):3626–3642.e3626. doi: 10.1016/j.cub.2017.10.054
  • Malik BR, Maddison DC, Smith GA, et al. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain. 2019;12(1):100. doi: 10.1186/s13041-019-0504-x
  • Cunningham KM, Maulding K, Ruan K, et al. TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. Elife. 2020;9. doi: 10.7554/eLife.59419
  • Lin C, Wu H, Weng E, et al. Fluvoxamine restores TFEB-mediated autophagy through sigma-1R-controlled POM121 expression. Res Square. 2023 doi: 10.1007/s12035-023-03885-9
  • Lee PT, Liévens J-C, Wang S-M, et al. Sigma-1 receptor chaperones rescue nucleocytoplasmic transport deficit seen in cellular and Drosophila ALS/FTD models. Nat Commun. 2020;11(1):5580. doi: 10.1038/s41467-020-19396-3
  • Estévez-Silva HM, et al. Pridopidine promotes synaptogenesis and reduces spatial memory deficits in the Alzheimer’s disease APP/PS1 mouse model. Neurotherapeutics. 2022;19:1566–1587. doi: 10.1007/s13311-022-01280-1
  • Francardo V, et al. Pridopidine induces functional neurorestoration via the sigma-1 receptor in a mouse model of Parkinson’s disease. Neurotherapeutics. 2019;16:465–479. doi: 10.1007/s13311-018-00699-9
  • Eddings CR, Arbez N, Akimov S, et al. Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor. Neurobiol Dis. 2019;129:118–129. doi: 10.1016/j.nbd.2019.05.009
  • Madeira F, Pearce M, Tivey ARN, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50(W1):W276–W279. doi: 10.1093/nar/gkac240
  • Makałowski W, Zhang J, Boguski MS. Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences. Genome Res. 1996;6(9):846–857. doi: 10.1101/gr.6.9.846
  • Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry. 2020;25(2):254–274. doi: 10.1038/s41380-019-0500-7
  • Mohamed MS, Hazawa M, Kobayashi A, et al. Spatiotemporally tracking of nano-biofilaments inside the nuclear pore complex core. Biomaterials. 2020;256:120198. doi: 10.1016/j.biomaterials.2020.120198
  • Venkataraman L, Fair SR, McElroy CA, et al. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer’s disease. Stem Cell Rev And Rep. 2022;18(2):696–717. doi: 10.1007/s12015-020-10068-9