1,600
Views
0
CrossRef citations to date
0
Altmetric
Review

Emergent microenvironments of nucleoli

, &
Article: 2319957 | Received 04 Sep 2023, Accepted 13 Feb 2024, Published online: 05 Mar 2024

References

  • Montgomery TSH. Comparative cytological studies, with especial regard to the morphology of the nucleolus. J Morphol. 1898;15(2):265–19. doi: 10.1002/jmor.1050150204
  • Pederson T. The Nucleolus. Cold Spring Harbor Perspect Biol. 2011;3(3):a000638. doi: 10.1101/cshperspect.a000638
  • Lafontaine DLJ, Riback JA, Bascetin R, et al. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol. 2021;22(3):165–182. doi: 10.1038/s41580-020-0272-6
  • Pappu RV, Cohen SR, Dar F, et al. Phase transitions of associative biomacromolecules. Chem Rev. 2023;123(14):8945–8987. doi: 10.1021/acs.chemrev.2c00814
  • Mittag T, Pappu RV. A conceptual framework for understanding phase separation and addressing open questions and challenges. Molecular Cell. 2022;82(12):2201–2214. doi: 10.1016/j.molcel.2022.05.018
  • Neitzel AE, Fang YN, Yu B, et al. Polyelectrolyte complex coacervation across a broad range of charge densities. Macromolecules. 2021;54:6878–6890. doi: 10.1021/acs.macromol.1c00703
  • Heidarsson PO, Mercadante D, Sottini A, et al. Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat Chem. 2022;14(2):224–231. doi: 10.1038/s41557-021-00839-3
  • Galvanetto N, Ivanović MT, Chowdhury A, et al. Extreme dynamics in a biomolecular condensate. Nature. 2023;619(7971):876–883. doi: 10.1038/s41586-023-06329-5
  • Adhikari S, Leaf MA, Muthukumar M. Polyelectrolyte complex coacervation by electrostatic dipolar interactions. J Chem Phys. 2018;149(16):163308. doi: 10.1063/1.5029268
  • Rumyantsev AM, Jackson NE, JJd P. Polyelectrolyte complex coacervates: recent developments and new frontiers. Ann Rev Condens Matter Phys. 2021;12(1):155–176. doi: 10.1146/annurev-conmatphys-042020-113457
  • Sing CE, Perry SL. Recent progress in the science of complex coacervation. Soft Matter. 2020;16(12):2885–914. doi: 10.1039/D0SM00001A
  • Li P, Banjade S, Cheng HC, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483(7389):336–40. doi: 10.1038/nature10879
  • Kar M, Dar F, Welsh TJ, et al. Phase separating RNA binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proceedings of the National Academy of Sciences 2022; 119(28):e2202222119. doi: 10.1073/pnas.2202222119
  • Cisse II, Izeddin I, Causse SZ, et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science. 2013;341:664–667. doi: 10.1126/science.1239053
  • Cho W-K, Spille J-H, Hecht M, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361(6400):412–5. doi: 10.1126/science.aar4199
  • Mir M, Reimer A, Haines JE, et al. Dense bicoid hubs accentuate binding along the morphogen gradient. Genes Dev. 2017;31(17):1784–94. doi: 10.1101/gad.305078.117
  • Farag M, Cohen SR, Borcherds WM, et al. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Nat Commun. 2022;13(1):7722. doi: 10.1038/s41467-022-35370-7
  • Donnan FG. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J Membr Sci. 1995;100(1):45–55. doi: 10.1016/0376-7388(94)00297-C
  • Alshareedah I, Moosa MM, Pham M, et al. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nat Commun. 2021;12(1):6620. doi: 10.1038/s41467-021-26733-7
  • Alshareedah I, Kaur T, Banerjee PR. Methods for characterizing the material properties of biomolecular condensates. Methods Enzymol. 2021;646:143–183.
  • Kilgore HR, Young RA. Learning the chemical grammar of biomolecular condensates. Nat Chem Biol. 2022;18(12):1298–1306. doi: 10.1038/s41589-022-01046-y
  • Thody SA, Clements HD, Baniasadi H, et al. Small molecule properties define partitioning into biomolecular condensates. bioRxiv. 2022. doi: 10.1101/2022.12.19.521099
  • Ahlers J, Adams EM, Bader V, et al. The key role of solvent in condensation: mapping water in liquid-liquid phase-separated FUS. Biophys J. 2021;120(7):1266–75. doi: 10.1016/j.bpj.2021.01.019
  • Pezzotti S, König B, Ramos S, et al. Liquid–Liquid Phase Separation? Ask the Water! J Phys Chem Lett. 2023;14(6):1556–63. doi: 10.1021/acs.jpclett.2c02697
  • Franzmann TM, Jahnel M, Pozniakovsky A, et al. Phase separation of a yeast prion protein promotes cellular fitness. Science. 2018;359(6371):359. doi: 10.1126/science.aao5654
  • Nott TJ, Craggs TD, Baldwin AJ. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat Chem. 2016;8(6):569–75. doi: 10.1038/nchem.2519
  • Feric M, Vaidya N, Harmon Tyler S, et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell. 2016;165(7):1686–97. doi: 10.1016/j.cell.2016.04.047
  • Harmon TS, Holehouse AS, Pappu RV. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins. New J Phys. 2018;20(4):045002. doi: 10.1088/1367-2630/aab8d9
  • Dai Y, Chamberlayne CF, Messina MS, et al. Interface of biomolecular condensates modulates redox reactions. Chem. 2023;9(6):1594–609. doi: 10.1016/j.chempr.2023.04.001
  • Wang H, Kelley FM, Milovanovic D, et al. Surface tension and viscosity of protein condensates quantified by micropipette aspiration. Biophy Rep. 2021;1(1):100011. doi: 10.1016/j.bpr.2021.100011
  • Shinn MK, Pappu RV. Soaping up transcriptional condensates. Dev Cell. 2023;58(11):915–6. doi: 10.1016/j.devcel.2023.05.002
  • Wang Z, Yang C, Guan D, et al. Cellular proteins act as surfactants to control the interfacial behavior and function of biological condensates. Dev Cell. 2023;58(11):919–32.e5. doi: 10.1016/j.devcel.2023.04.004
  • Riback JA, Eeftens JM, Lee DSW, et al. Viscoelasticity and advective flow of RNA underlies nucleolar form and function. Molecular Cell. 2022;83(17):3095–107.e9. doi: 10.1016/j.molcel.2023.08.006
  • Brangwynne CP, Mitchison TJ, Hyman AA Active liquid-like behavior of nucleoli determines their size and shape in xenopus laevis oocytes. Proceedings of the National Academy of Sciences 2011; 108(11):4334–4339. doi: 10.1073/pnas.1017150108
  • Pak Chi W, Kosno M, Holehouse Alex S, et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Molecular Cell. 2016;63(1):72–85. doi: 10.1016/j.molcel.2016.05.042
  • Hoffmann C, Murastov G, Tromm JV, et al. Electric potential at the interface of membraneless organelles gauged by graphene. Nano Lett. 2023;23(23):10796–801. doi: 10.1021/acs.nanolett.3c02915
  • Feric M, Sarfallah A, Dar F, et al. Mesoscale structure–function relationships in mitochondrial transcriptional condensates. Proceedings of the National Academy of Sciences 2022;119(41):e2207303119. doi:10.1073/pnas.2207303119
  • Farag M, Borcherds WM, Bremer A, et al. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat Commun. 2023;14(1):5527. doi: 10.1038/s41467-023-41274-x
  • Boeynaems S, Holehouse AS, Weinhardt V et al. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties. Proceedings of the National Academy of Sciences USA 2019; 116(16):7889–7898. doi: 10.1073/pnas.1821038116
  • Boisvert F-M, van Koningsbruggen S, Navascués J, et al. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8(7):574–85. doi: 10.1038/nrm2184
  • Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998;26(17):3871–6. doi: 10.1093/nar/26.17.3871
  • Mitrea DM, Cika JA, Guy CS, et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. Elife. 2016;5:e13571. doi: 10.7554/eLife.13571
  • Riback JA, Zhu L, Ferrolino MC, et al. Composition-dependent thermodynamics of intracellular phase separation. Nature. 2020;581(7807):209–14. doi: 10.1038/s41586-020-2256-2
  • Cho NH, Cheveralls KC, Brunner A-D, et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science. 2022;375(6585):eabi6983. doi: 10.1126/science.abi6983
  • Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017;356(6340). doi: 10.1126/science.aal3321
  • King MR, Ruff KM, Lin AZ, et al. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 2024. In press. doi:10.2139/ssrn.4520791
  • Abad JP. Proton motive force. In: Gargaud M, Amils R, Quintanilla J, Cleaves H, Irvine W Pinti DL, et al., editors. Encyclopedia of astrobiology. Berlin (Heidelberg): Springer; 2011. pp. 1355–1356.
  • Harold C. All these screens that we’ve done: how functional genetic screens have informed our understanding of ribosome biogenesis. Biosci Rep. 2023;43(7). doi: 10.1042/BSR20230631
  • Hori Y, Engel C, Kobayashi T. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol. 2023;24(6):1–16. doi: 10.1038/s41580-022-00573-9
  • Klinge S, Woolford JL. Ribosome assembly coming into focus. Nat Rev Mol Cell Biol. 2019;20(2):116–31. doi: 10.1038/s41580-018-0078-y
  • Navarro C. Special Issue: The Nucleolus. Trends Genet. 2019;35(10):709. doi: 10.1016/j.tig.2019.08.001
  • Dörner K, Ruggeri C, Zemp I, et al. Ribosome biogenesis factors—from names to functions. EMBO J. 2023;42(7):e112699. doi: 10.15252/embj.2022112699
  • Erdmann PS, Hou Z, Klumpe S, et al. In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. Nat Commun. 2021;12(1):5364. doi: 10.1038/s41467-021-25413-w
  • Lin S, Rajan S, Lemberg S, et al. Production of nascent ribosome precursors within the nucleolar microenvironment of Saccharomyces cerevisiae. Genetics. 2022;221(3):iyac070. doi: 10.1093/genetics/iyac070
  • Lucas BA, Zhang K, Loerch S, et al. In situ single particle classification reveals distinct 60S maturation intermediates in cells. Elife. 2022;11:e79272. doi: 10.7554/eLife.79272
  • Shan L, Xu G, Yao R-W, et al. Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance. Nature. 2023;2023(7952):1–9. doi: 10.1038/s41586-023-05767-5
  • Yao R-W, Xu G, Wang Y, et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Molecular Cell. 2019;76(5):767–83.e11. doi: 10.1016/j.molcel.2019.08.014
  • Derenzini M, Farabegoli F, Pession A, et al. Spatial redistribution of ribosomal chromatin in the fibrillar centres of human circulating lymphocytes after stimulation of transcription. Exp Cell Res. 1987;170(1):31–41. doi: 10.1016/0014-4827(87)90114-5
  • Derenzini M, Pasquinelli G, O’Donohue M-F, et al. Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem. 2006;54(2):131–45. doi: 10.1369/jhc.5R6780.2005
  • Calo E, Gu B, Bowen ME, et al. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature. 2018;554(7690):112–7. doi: 10.1038/nature25449
  • Grzanka M, Piekiełko-Witkowska A. The role of TCOF1 gene in health and disease: beyond treacher collins syndrome. Int J Mol Sci. 2021;22(5):2482. doi: 10.3390/ijms22052482
  • Stenström L, Mahdessian D, Gnann C, et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol. 2020;16(8):e9469. doi: 10.15252/msb.20209469
  • Politz JC, Yarovoi S, Kilroy SM, et al. Signal recognition particle components in the nucleolus. Proceedings of the National Academy of Sciences. 2000;97(1):55–60. doi:10.1073/pnas.97.1.55
  • Politz JCR, Polena I, Trask I, et al. A nonribosomal landscape in the nucleolus revealed by the stem cell protein Nucleostemin. Mol Biol Cell. 2005;16(7):3401–10. doi: 10.1091/mbc.e05-02-0106
  • Leung AKL, Andersen JS, Mann M, et al. Bioinformatic analysis of the nucleolus. Biochem J. 2003;376(3):553–69. doi: 10.1042/bj20031169
  • Andersen JS, Lam YW, Leung AKL, et al. Nucleolar proteome dynamics. Nature. 2005;433(7021):77–83. doi: 10.1038/nature03207
  • Iarovaia OV, Minina EP, Sheval EV, et al. Nucleolus: a central hub for nuclear functions. Trends Cell Biol. 2019;29(8):647–59. doi: 10.1016/j.tcb.2019.04.003
  • Tartakoff A, DiMario P, Hurt E, et al. The dual nature of the nucleolus. Genes Dev. 2022;36(13–14):765–9. doi: 10.1101/gad.349748.122
  • Frottin F, Schueder F, Tiwary S, et al. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365(6451):342–7. doi: 10.1126/science.aaw9157
  • Zhu L, Richardson TM, Wacheul L, et al. Controlling the material properties and rRNA processing function of the nucleolus using light. Proceedings of the National Academy of Sciences 2019;116(35):17330–17335. doi:10.1073/pnas.1903870116
  • Ferrolino MC, Mitrea DM, Michael JR, et al. Compositional adaptability in NPM1-SURF6 scaffolding networks enabled by dynamic switching of phase separation mechanisms. Nat Commun. 2018;9(1):5064. doi: 10.1038/s41467-018-07530-1
  • Mitrea DM, Cika JA, Stanley CB, et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat Commun. 2018;9(1):842. doi: 10.1038/s41467-018-03255-3
  • Wu M, Xu G, Han C, et al. lncRNA SLERT controls phase separation of FC/DFCs to facilitate pol I transcription. Science. 2021;373(6554):547–55. doi: 10.1126/science.abf6582
  • Bersaglieri C, Kresoja-Rakic J, Gupta S, et al. Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat Commun. 2022;13(1):1483. doi: 10.1038/s41467-022-29146-2
  • Mahdessian D, Cesnik AJ, Gnann C, et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature. 2021;590(7847):649–54. doi: 10.1038/s41586-021-03232-9
  • Quinodoz SA, Jachowicz JW, Bhat P, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23):5775–90.e30. doi: 10.1016/j.cell.2021.10.014
  • Viana MP, Chen J, Knijnenburg TA, et al. Integrated intracellular organization and its variations in human iPS cells. Nature. 2023;613(7943):345–54. doi: 10.1038/s41586-022-05563-7
  • Matheson TD, Kaufman PD. Grabbing the genome by the NADs. Chromosoma. 2016;125(3):361–71. doi: 10.1007/s00412-015-0527-8
  • Abraham KJ, Khosraviani N, Chan JNY, et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 2020;585(7824):298-302. doi: 10.1038/s41586-020-2497-0.
  • McCool MA, Bryant CJ, Huang H, et al. Human nucleolar protein 7 (NOL7) is required for early pre-rRNA accumulation and pre-18S rRNA processing. RNA Biol. 2023;20(1):257–71. doi: 10.1080/15476286.2023.2217392
  • Falahati H, Pelham-Webb B, Blythe S, et al. Nucleation by rRNA dictates the precision of nucleolus assembly. Curr Biol. 2016;26(3):277–85. doi: 10.1016/j.cub.2015.11.065
  • Grob A, Colleran C, McStay B. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev. 2014;28(3):220–30. doi: 10.1101/gad.234591.113
  • Jaberi-Lashkari N, Lee B, Aryan F, et al. An evolutionarily nascent architecture underlying the formation and emergence of biomolecular condensates. Cell Rep. 2023;42(8):112955. doi: 10.1016/j.celrep.2023.112955
  • Li H, Wang B, Yang A, et al. Ly-1 antibody reactive clone is an important nucleolar protein for control of self-renewal and differentiation in embryonic stem cells. Stem Cells. 2009;27(6):1244–54. doi: 10.1002/stem.55
  • Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. doi: 10.1126/science.abj6987
  • Cockrell AJ, Gerton JL. Nucleolar organizer regions as transcription-based scaffolds of nucleolar structure and function. In: Kloc M, JZ K, Kloc M JZ K, editors. Nuclear, chromosomal, and genomic architecture in biology and medicine results and problems in cell differentiation. Cham: Springer; 2022. pp. 551–580.
  • Batnasan E, Koivukoski S, Kärkkäinen M, et al. Nuclear organization in response to stress: a special focus on nucleoli: In: Kloc M, JZ K, Kloc M JZ K,editor. Nuclear, chromosomal, and genomic architecture in biology and medicine results and problems in cell differentiation. Cham: Springer; 2022. pp. 469–494
  • Schächner C, Merkl PE, Pilsl M, et al. Establishment and maintenance of open ribosomal RNA gene chromatin states in eukaryotes. In: Entian K-D, Entian K-D, editors. Ribosome biogenesis: methods and protocols. New York (NY); 2022. pp. 25–38. doi: 10.1007/978-1-0716-2501-9_2
  • Ugolini I, Bilokapic S, Ferrolino M, et al. Chromatin localization of nucleophosmin organizes ribosome biogenesis. Mol Cell. 2022;82(23):4443–57.e9. doi: 10.1016/j.molcel.2022.10.033
  • Antony C, George SS, Blum J, et al. Control of ribosomal RNA synthesis by hematopoietic transcription factors. Molecular Cell. 2022;82(20):3826–39.e9. doi: 10.1016/j.molcel.2022.08.027
  • Fei J, Jadaliha M, Harmon TS, et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci. 2017;130:4180–4192. doi: 10.1242/jcs.206854
  • Kim E, Kwon I. Phase transition of fibrillarin LC domain regulates localization and protein interaction of fibrillarin. Biochem J. 2021;478(4):799–810. doi: 10.1042/BCJ20200847
  • Li D, Cao R, Li Q, et al. Nucleolus assembly impairment leads to two-cell transcriptional repression via NPM1-mediated PRC2 recruitment. Nat Struct Mol Biol. 2023;30(7):1–12. doi: 10.1038/s41594-023-01003-w
  • Xing Y-H, Yao R-W, Zhang Y, et al. SLERT regulates ddx21 rings associated with pol I transcription. Cell. 2017;169(4):664–78.e16. doi: 10.1016/j.cell.2017.04.011
  • Spaulding EL, Feidler AM, Cook LA, et al. RG/RGG repeats in the C. elegans homologs of nucleolin and GAR1 contribute to sub-nucleolar phase separation. Nat Commun. 2022;13(1):6585. doi: 10.1038/s41467-022-34225-5
  • Harmon TS, Jülicher F. Molecular assembly lines in active droplets. Phys Rev Lett. 2022;128(10):108102. doi: 10.1103/PhysRevLett.128.108102
  • Chen Z, Suzuki H, Kobayashi Y, et al. Structural insights into Mdn1, an essential AAA protein required for ribosome biogenesis. Cell. 2018;175(3):822–34.e18. doi: 10.1016/j.cell.2018.09.015
  • Ginisty H, Sicard H, Roger B, et al. Structure and functions of nucleolin. J Cell Sci. 1999;112(6):761–72. doi: 10.1242/jcs.112.6.761
  • Yang P, Mathieu C, Kolaitis R-M, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181(2):325–45.e28. doi: 10.1016/j.cell.2020.03.046
  • Guillén-Boixet J, Kopach A, Holehouse AS, et al. RNA-Induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell. 2020;181(2):346–61.e17. doi: 10.1016/j.cell.2020.03.049
  • Sanders DW, Kedersha N, Lee DSW, et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell. 2020;181(2):306–24 e28. doi: 10.1016/j.cell.2020.03.050
  • Okuwaki M, Saotome-Nakamura A, Yoshimura M, et al. RNA-recognition motifs and glycine and arginine-rich region cooperatively regulate the nucleolar localization of nucleolin. J Biochem. 2020;169(1):87–100. doi: 10.1093/jb/mvaa095
  • Cohan MC, Kyung Shinn M, Lalmansingh JM, et al. Uncovering non-random binary patterns within sequences of intrinsically disordered proteins. J Mol Biol. 2021;434(2):167373. doi:10.1016/j.jmb.2021.167373
  • Shinn MK, Cohan MC, Bullock JL, et al. Connecting sequence features within the disordered C-terminal linker of Bacillus subtilis FtsZ to functions and bacterial cell division. Proceedings of the National Academy of Sciences 2022;119(42):e2211178119. doi:10.1073/pnas.2211178119
  • Zarin T, Strome B, Ba an N, et al. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. Elife. 2019;8:e46883. doi: 10.7554/eLife.46883
  • Zarin T, Strome B, Peng G, et al. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. Elife. 2021;10:e60220. doi: 10.7554/eLife.60220
  • Martin EW, Holehouse AS, Peran I, et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science. 2020;367(6478):694–9. doi: 10.1126/science.aaw8653
  • Bremer A, Farag M, Borcherds WM, et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem. 2022;14(2):196–207. doi: 10.1038/s41557-021-00840-w
  • Holehouse AS, Ginell GM, Griffith D, et al. Clustering of aromatic residues in prion-like domains can tune the formation, State, and organization of biomolecular condensates. Biochemistry. 2021;60(47):3566–81. doi: 10.1021/acs.biochem.1c00465
  • Wang J, Choi J-M, Holehouse AS, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018;174(3):688–99.e16. doi: 10.1016/j.cell.2018.06.006
  • Lyons H, Veettil RT, Pradhan P, et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell. 2023;186(2):327–45.e28. doi: 10.1016/j.cell.2022.12.013
  • Greig JA, Nguyen TA, Lee M, et al. Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. Molecular Cell. 2020;77(6):1237–50.e4. doi: 10.1016/j.molcel.2020.01.025
  • Elbaum-Garfinkle S, Kim Y, Szczepaniak K, et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proceedings of the National Academy of Sciences USA 2015;112(23):7189–7194. doi:10.1073/pnas.1504822112
  • Wei MT, Elbaum-Garfinkle S, Holehouse AS, et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem. 2017;9(11):1118–1125. doi: 10.1038/nchem.2803
  • Nott TJ, Petsalaki E, Farber P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Molecular Cell. 2015;57(5):936–47. doi: 10.1016/j.molcel.2015.01.013
  • Bergeron-Sandoval LP, Kumar S, Heris HK, et al. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proceedings of the National Academy of Sciences USA. 2021;118(50):e2113789118. doi:10.1073/pnas.2113789118
  • Riback JA, Katanski CD, Kear-Scott JL, et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell. 2017;168(6):1028–40 e19. doi: 10.1016/j.cell.2017.02.027
  • Ruff KM, Choi YH, Cox D, et al. Sequence grammar underlying the unfolding and phase separation of globular proteins. Molecular Cell. 2022;82(17):3193–208.e8. doi: 10.1016/j.molcel.2022.06.024
  • Rawat P, Boehning M, Hummel B, et al. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Molecular Cell. 2021;81(5):1013–26.e11. doi: 10.1016/j.molcel.2021.01.016
  • Alshareedah I, Borcherds W, Cohen M, et al. Sequence-encoded grammars determine material properties and physical aging of protein condensates. bioRxiv 2023:2023.04.06.535902.
  • Brady JP, Farber PJ, Sekhar A, et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proceedings of the National Academy of Sciences. 2017;114(39):E8194–E203. doi:10.1073/pnas.1706197114
  • Brangwynne CP, Tompa P, Pappu RV. Polymer physics of intracellular phase transitions. Nat Phys. 2015;11(11):899–904. doi: 10.1038/nphys3532
  • Harmon TS, Holehouse AS, Rosen MK, et al. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife. 2017;6:30294. doi: 10.7554/eLife.30294
  • Lin Y, Currie SL, Rosen MK. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem. 2017;292(46):19110–20. doi: 10.1074/jbc.M117.800466
  • Banjade S, Wu Q, Mittal A, et al. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. Proceedings of the National Academy of Sciences USA 2015;112(47):E6426–35. doi:10.1073/pnas.1508778112
  • Tompa P, Davey Norman E, Gibson Toby J, et al. a million peptide motifs for the molecular biologist. Mol Cell. 2014;55(2):161–169. doi: 10.1016/j.molcel.2014.05.032
  • Wadsworth GM, Zahurancik WJ, Zeng X, et al. Rnas undergo phase transitions with lower critical solution temperatures. 2023;15:1693–1704. doi:10.1073/pnas.1508778112
  • Lin AZ, Ruff KM, Jalihal A, et al. Dynamical control enables the formation of demixed biomolecular condensates. Nat Commun. 2023;14(1):7678. doi: 10.1038/s41467-023-43489-4
  • Crick SL, Jayaraman M, Frieden C, et al. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proceedings of the National Academy of Sciences. 2006;103(45):16764–16769. doi:10.1073/pnas.0608175103
  • Mao AH, Crick SL, Vitalis A, et al. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proceedings of the National Academy of Sciences 2010;107(18):8183–8188. doi:10.1073/pnas.0911107107
  • Das RK, Crick SL, Pappu RV. N-Terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. J Mol Biol. 2012;416(2):287–99. doi: 10.1016/j.jmb.2011.12.043
  • Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proceedings of the National Academy of Sciences. 2013;110(33):13392–13397. doi:10.1073/pnas.1304749110
  • van der Lee R, Buljan M, Lang B, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114(13):6589–6631. doi: 10.1021/cr400525m
  • Das RK, Ruff KM, Pappu RV. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr Opin Struct Biol. 2015;32:102–12. doi: 10.1016/j.sbi.2015.03.008
  • Holehouse AS, Das RK, Ahad JN, et al. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys J. 2017;112:16–21. doi: 10.1016/j.bpj.2016.11.3200
  • Sherry KP, Das RK, Pappu RV, et al. Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the notch receptor. Proceedings of the National Academy of Sciences USA. 2017;114:E9243–E52. doi:10.1073/pnas.1706083114
  • González-Foutel NS, Glavina J, Borcherds WM, et al. Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol. 2022;29(8):781–90. doi: 10.1038/s41594-022-00811-w
  • Zeng X, Ruff KM, Pappu RV. Competing interactions give rise to two-state behavior and switch-like transitions in charge-rich intrinsically disordered proteins. Proceedings of the National Academy of Sciences. 2022;119(19):e2200559119. doi:10.1073/pnas.2200559119
  • Patil A, Strom AR, Paulo JA, et al. A single disordered region controls cBAF chromatin remodeling through condensation and partner recruitment. Cell. 2023;186(22):4936–4955. doi: 10.1016/j.cell.2023.08.032
  • Mensah MA, Niskanen H, Magalhaes AP, et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature. 2023;614:564–71. doi: 10.1038/s41586-022-05682-1
  • Carter R, Drouin G. Structural differentiation of the three eukaryotic RNA polymerases. Genomics. 2009;94(6):388–96. doi: 10.1016/j.ygeno.2009.08.011
  • Hnisz D, Shrinivas K, Young RA, et al. A phase separation Model for transcriptional control. Cell. 2017;169(1):13–23. doi: 10.1016/j.cell.2017.02.007
  • Gautier T, Bergès T, Tollervey D, et al. Nucleolar KKE/D Repeat proteins Nop56P and Nop58P interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol. 1997;17(12):7088–98. doi: 10.1128/MCB.17.12.7088
  • Hong Y, Najafi S, Casey T, et al. Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins. Nat Commun. 2022;13(1):7326. doi: 10.1038/s41467-022-35001-1
  • Fossat MJ, Zeng X, Pappu RV. Uncovering differences in hydration free energies and structures for Model compound mimics of charged side chains of amino acids. J Phys Chem B. 2021;125(16):4148–61. doi: 10.1021/acs.jpcb.1c01073
  • Mascotti DP, Lohman TM. Thermodynamics of oligoarginines binding to RNA and DNA. Biochemistry. 1997;36(23):7272–9. doi: 10.1021/bi970272n
  • Jantzen H-M, Admon A, Bell SP, et al. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature. 1990;344(6269):830–6. doi: 10.1038/344830a0
  • Mais C, Wright JE, Prieto J-L, et al. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 2005;19(1):50–64. doi: 10.1101/gad.310705
  • Allain FHT, Bouvet P, Dieckmann T, et al. Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J. 2000;19(24):6870–6881. doi: 10.1093/emboj/19.24.6870
  • Heine MA, Rankin ML, DiMario PJ. The Gly/Arg-rich (GAR) domain of Xenopus nucleolin facilitates in vitro nucleic acid binding and in vivo nucleolar localization. Mol Biol Cell. 1993;4(11):1189–204. doi: 10.1091/mbc.4.11.1189
  • Mongelard F, Bouvet P. Nucleolin: a multiFaceted protein. Trends Cell Biol. 2007;17(2):80–6. doi: 10.1016/j.tcb.2006.11.010
  • Ojha S, Malla S, Lyons SM. snoRnps: functions in ribosome biogenesis. Biomolecules. 2020;10:783. doi: 10.3390/biom10050783
  • Lapinaite A, Simon B, Skjaerven L, et al. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature. 2013;502(7472):519–23. doi: 10.1038/nature12581
  • Peng Y, Yu G, Tian S, et al. Co-expression and co-purification of archaeal and eukaryal box c/d RNPs. PLoS One. 2014;9(7):e103096. doi: 10.1371/journal.pone.0103096
  • Yu G, Zhao Y, Li H. The multistructural forms of box C/D ribonucleoprotein particles. RNA. 2018;24(12):1625–33. doi: 10.1261/rna.068312.118
  • Yang Z, Wang J, Huang L, et al. Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Res. 2020;48(9):5094–105. doi: 10.1093/nar/gkaa247
  • Gouveia B, Kim Y, Shaevitz JW, et al. Capillary forces generated by biomolecular condensates. Nature. 2022;609(7926):255–64. doi: 10.1038/s41586-022-05138-6
  • Chang L-W, Lytle TK, Radhakrishna M, et al. Sequence and entropy-based control of complex coacervates. Nat Commun. 2017;8(1):1273. doi: 10.1038/s41467-017-01249-1
  • Fossat MJ, Posey AE, Pappu RV. Quantifying charge state heterogeneity for proteins with multiple ionizable residues. Biophys J. 2021;120(24):5438–53. doi: 10.1016/j.bpj.2021.11.2886
  • Fossat MJ, Posey AE, Pappu RV. Uncovering the contributions of charge regulation to the stability of single alpha helices. Chemphyschem. 2023;24(7):e202200746. doi: 10.1002/cphc.202200746
  • Fossat MJ, Pappu RV. Q-canonical monte carlo sampling for modeling the linkage between charge regulation and conformational equilibria of peptides. J Phys Chem B. 2019;123(32):6952–6967. doi: 10.1021/acs.jpcb.9b05206
  • Martin RM, Ter-Avetisyan G, Herce HD, et al. Principles of protein targeting to the nucleolus. Nucleus. 2015;6(4):314–25. doi: 10.1080/19491034.2015.1079680
  • Simon J, van Spanning RJM, Richardson DJ. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim Biophys Acta Bioenerg. 2008;1777(12):1480–1490. doi: 10.1016/j.bbabio.2008.09.008
  • Balakrishnan R, Park J, Karra K, et al. YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit. Database. 2012. doi:10.1093/database/bar062.
  • Colau G, Thiry M, Leduc V, et al. The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology. Mol Cell Biol. 2004;24(18):7976–86. doi: 10.1128/MCB.24.18.7976-7986.2004