1,315
Views
0
CrossRef citations to date
0
Altmetric
Review

Heterochromatin in plant meiosis

, , & ORCID Icon
Article: 2328719 | Received 11 Sep 2023, Accepted 05 Mar 2024, Published online: 15 Mar 2024

References

  • Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997; 389:251–18. 6648 doi: 10.1038/38444
  • Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 2015;16(11):1439–53. doi: 10.15252/embr.201540749
  • Allshire RC, Madhani HD. Ten Principles of heterochromatin formation and function. Nat Rev Mol Cell Biol. 2018;19(4):229–44. doi: 10.1038/nrm.2017.119
  • Bell O, Burton A, Dean C, et al. Heterochromatin definition and function. Nat Rev Mol Cell Biol. 2023;24(10):691–694. doi: 10.1038/s41580-023-00599-7
  • Liu J, Ali M, Zhou Q. Establishment and evolution of heterochromatin. Ann N Y Acad Sci. 2020;1476(1):59–77. doi: 10.1111/nyas.14303
  • Feng W, Michaels SD. Accessing the inaccessible: the organization, transcription, replication, and repair of heterochromatin in plants. Ann Rev Genet. 2015;49(1):439–59. doi: 10.1146/annurev-genet-112414-055048
  • Zickler D, Kleckner N. Meiosis: dances between homologs. Ann Rev Genet 2023; 57. 1 1–63 doi: 10.1146/annurev-genet-061323-044915
  • Ohkura H. Meiosis: an overview of key differences from mitosis. Cold Spring Harb Perspect Biol. 2015;7(5):a015859. doi: 10.1101/cshperspect.a015859
  • Hirano T. Chromosome dynamics during mitosis. Cold Spring Harb Perspect Biol. 2015;7(6):a015792. doi: 10.1101/cshperspect.a015792
  • Ma H. A molecular portrait of Arabidopsis meiosis. Arabidopsis Book. 2006;4:e0095. doi: 10.1199/tab.0095
  • Wang Y, Copenhaver GP. Meiotic recombination: mixing it up in plants. Annu Rev Plant Biol. 2018;69(1):577–609. doi: 10.1146/annurev-arplant-042817-040431
  • Zhang H, Lang Z, Zhu JK. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 2018;19(8):489–506. doi: 10.1038/s41580-018-0016-z
  • Wendte JM, Schmitz RJ. Specifications of targeting heterochromatin modifications in plants. Mol Plant. 2018;11(3):381–7. doi: 10.1016/j.molp.2017.10.002
  • Saze H, Mittelsten Scheid O, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet. 2003;34(1):65–9. doi: 10.1038/ng1138
  • Kankel MW, Ramsey DE, Stokes TL, et al. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics. 2003;163(3):1109–22. doi: 10.1093/genetics/163.3.1109
  • Lindroth AM, Cao X, Jackson JP, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 2001;292(5524):2077–80. doi: 10.1126/science.1059745
  • Zhong X, Du J, Hale CJ, et al. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell. 2014;157(5):1050–60. doi: 10.1016/j.cell.2014.03.056
  • Zemach A, Kim MY, Hsieh PH, et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013;153(1):193–205. doi: 10.1016/j.cell.2013.02.033
  • Borg M, Jiang D, Berger F. Histone variants take center stage in shaping the epigenome. Curr Opin Plant Biol. 2021;61:101991. doi: 10.1016/j.pbi.2020.101991
  • Benoit M, Simon L, Desset S, et al. Replication-coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. New Phytol. 2019;221(1):385–98. doi: 10.1111/nph.15248
  • Tagami H, Ray-Gallet D, Almouzni G, et al. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004;116(1):51–61. doi: 10.1016/S0092-8674(03)01064-X
  • Wollmann H, Stroud H, Yelagandula R, et al. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol. 2017;18(1):94. doi: 10.1186/s13059-017-1221-3
  • Nie X, Wang H, Li J, et al. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics. Biol Open 2014; 3:794–802. 9 10.1242/bio.20148680
  • Stroud H, Otero S, Desvoyes B, et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2012;109(14):5370–5. doi: 10.1073/pnas.1203145109
  • Ono T, Kaya H, Takeda S, et al. Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells. 2006;11(2):153–62. doi: 10.1111/j.1365-2443.2006.00928.x
  • Yelagandula R, Stroud H, Holec S, et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. 158:98–109. 2014 Cell 1 doi: 10.1016/j.cell.2014.06.006
  • Choi J, Lyons DB, Kim MY, et al. DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcripts. Mol Cell 2020; 77:310–323.e7. 2 doi: 10.1016/j.molcel.2019.10.011
  • Jiang D, Berger F. Histone variants in plant transcriptional regulation. Biochim Biophys Acta, Gene Regul Mech. 2017;1860(1):123–30. doi: 10.1016/j.bbagrm.2016.07.002
  • Jacob Y, Bergamin E, Donoghue MT, et al. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 2014; 343:1249–1253. 6176 doi: 10.1126/science.1248357
  • Ebbs ML, Bartee L, Bender J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol Cell Biol. 2005;25(23):10507–15. doi: 10.1128/MCB.25.23.10507-10515.2005
  • Ebbs ML, Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell. 2006;18(5):1166–76. doi: 10.1105/tpc.106.041400
  • Du J, Zhong X, Bernatavichute YV, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell. 2012;151(1):167–80. doi: 10.1016/j.cell.2012.07.034
  • Nishibuchi G, Nakayama J. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem. 2014;156(1):11–20. doi: 10.1093/jb/mvu032
  • Sanulli S, Trnka MJ, Dharmarajan V, et al. HP1 reshapes nucleosome core to promote heterochromatin phase separation. Nature 2019. 575 7782 390–394 doi: 10.1038/s41586-019-1669-2
  • Lachner M, O’Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410(6824):116–20. doi: 10.1038/35065132
  • Kwon SH, Workman JL. The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol Cells. 2008;26(3):217–27. doi: 10.1016/S1016-8478(23)13988-4
  • Wang H, Jiang D, Axelsson E, et al. LHP1 interacts with ATRX through plant-specific domains at specific loci targeted by PRC2. Mol Plant. 2018;11(8):1038–52. doi: 10.1016/j.molp.2018.05.004
  • Zhang X, Germann S, Blus BJ, et al. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol. 2007;14(9):869–71. doi: 10.1038/nsmb1283
  • Zhao S, Cheng L, Gao Y, et al. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res 2018. 29 1 54–66 doi: 10.1038/s41422-018-0104-9
  • Zhang C, Du X, Tang K, et al. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat Commun. 2018;9(1):4547. doi: 10.1038/s41467-018-06965-w
  • Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10(10):697–708. doi: 10.1038/nrm2763
  • Xiao J, Wagner D. Polycomb repression in the regulation of growth and development in Arabidopsis. Curr Opin Plant Biol. 2015;23:15–24. doi: 10.1016/j.pbi.2014.10.003
  • Zhang X, Clarenz O, Cokus S, et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 2007;5(5):e129. doi: 10.1371/journal.pbio.0050129
  • Mathieu O, Probst AV, Paszkowski J. Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J. 2005;24(15):2783–91. doi: 10.1038/sj.emboj.7600743
  • Jacob Y, Feng S, LeBlanc CA, et al. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol. 2009;16(7):763–8. doi: 10.1038/nsmb.1611
  • Potok ME, Zhong Z, Picard CL, et al. The role of ATXR6 expression in modulating genome stability and transposable element repression in Arabidopsis. Proc Natl Acad Sci U S A. 2022;119(3):119. doi: 10.1073/pnas.2115570119
  • Dong J, LeBlanc C, Poulet A, et al. H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. Plant Cell. 2021;33(4):961–979. doi:10.1093/plcell/koaa027
  • Jacob Y, Stroud H, Leblanc C, et al. Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature. 2010;466(7309):987–91. doi: 10.1038/nature09290
  • Moissiard G, Cokus SJ, Cary J, et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science. 2012;336(6087):1448–51. doi: 10.1126/science.1221472
  • Liu ZW, Zhou JX, Huang HW, et al. Two components of the RNA-Directed DNA methylation pathway associate with MORC6 and silence loci targeted by MORC6 in Arabidopsis. PloS Genet. 2016;12(5):e1006026. doi: 10.1371/journal.pgen.1006026
  • Jing Y, Sun H, Yuan W, et al. SUVH2 and SUVH9 couple two essential steps for transcriptional gene silencing in Arabidopsis. Mol Plant. 2016;9(8):1156–67. doi: 10.1016/j.molp.2016.05.006
  • Xue Y, Zhong Z, Harris CJ, et al. Arabidopsis MORC proteins function in the efficient establishment of RNA directed DNA methylation. Nat Commun. 2021;12(1):12. doi: 10.1038/s41467-021-24553-3
  • Harris CJ, Husmann D, Liu WL, et al. Arabidopsis AtMORC4 and AtMORC7 form nuclear bodies and repress a large number of protein-coding genes. PloS Genet. 2016;12(5):e1005998. doi: 10.1371/journal.pgen.1005998
  • Liu Q, Gong Z. The coupling of epigenome replication with DNA replication. Curr Opin Plant Biol. 2011;14(2):187–94. doi: 10.1016/j.pbi.2010.12.001
  • Jiang D, Berger F DNA replication–coupled histone modification maintains Polycomb gene silencing in plants. Science 2017; 357:1146–1149. 6356 doi: 10.1126/science.aan4965
  • Davarinejad H, Joshi M, Ait-Hamou N, et al. ATXR5/6 forms alternative protein complexes with PCNA and the nucleosome core particle. J Mol Biol. 2019;431(7):1370–9. doi: 10.1016/j.jmb.2019.02.020
  • Li F, Martienssen R, Cande WZ Coordination of DNA replication and histone modification by the Rik1–Dos2 complex. Nature 2011; 475:244–248. 7355 doi: 10.1038/nature10161
  • He H, Li Y, Dong Q, et al. Coordinated regulation of heterochromatin inheritance by Dpb3–Dpb4 complex. Proc Natl Acad Sci U S A 2017; 114:12524–12529. 47 doi: 10.1073/pnas.1712961114
  • Smith JS, Caputo E, Boeke JD. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol. 1999;19(4):3184–97. doi: 10.1128/MCB.19.4.3184
  • Iida T, Araki H Noncompetitive Counteractions of DNA polymerase ε and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:217–227. 1 doi: 10.1128/MCB.24.1.217-227.2004
  • Bourguet P, Lopez-Gonzalez L, Gomez-Zambrano A, et al. DNA polymerase epsilon is required for heterochromatin maintenance in Arabidopsis. Genome Biol 2020; 21:283. 1 doi: 10.1186/s13059-020-02190-1
  • Mainiero S, Pawlowski WP. Meiotic chromosome structure and function in plants. Cytogenet Genome Res. 2014;143(1–3):6–17. doi: 10.1159/000365260
  • Kleckner N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma. 2006;115(3):175–94. doi: 10.1007/s00412-006-0055-7
  • Ferdous M, Higgins JD, Osman K, et al. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PloS Genet. 2012;8(2):e1002507. doi: 10.1371/journal.pgen.1002507
  • Armstrong SJ, Caryl AP, Jones GH, et al. Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci. 2002;115(18):3645–55. doi: 10.1242/jcs.00048
  • Chambon A, West A, Vezon D, et al. Identification of ASYNAPTIC4, a component of the meiotic chromosome axis. Plant Physiol 2018; 178:233–246. 1 doi: 10.1104/pp.17.01725
  • Hagstrom KA, Meyer BJ. Condensin and cohesin: more than chromosome compactor and glue. Nat Rev Genet. 2003;4(7):520–34. doi: 10.1038/nrg1110
  • Schubert V. SMC proteins and their multiple functions in higher plants. Cytogenet Genome Res. 2009;124(3–4):202–14. doi: 10.1159/000218126
  • Heldrich J, Milano CR, Markowitz TE, et al. Two pathways drive meiotic chromosome axis assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2022; 50:4545–4556. 8 doi: 10.1093/nar/gkac227
  • Fujiwara Y, Horisawa-Takada Y, Inoue E, et al. Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase. PloS Genet. 2020;16(9):e1009048. doi: 10.1371/journal.pgen.1009048
  • Lee J. Roles of cohesin and condensin in chromosome dynamics during Mammalian meiosis. J Reprod Dev. 2013;59(5):431–6. doi: 10.1262/jrd.2013-068
  • Lambing C, Tock AJ, Topp SD, et al. Interacting genomic landscapes of REC8-cohesin, chromatin, and meiotic recombination in Arabidopsis. Plant Cell. 2020;32(4):1218–39. doi: 10.1105/tpc.19.00866
  • Mercier R, De K, Sterle L, et al. Arabidopsis thaliana WAPL is Essential for the Prophase Removal of Cohesin during Meiosis. PloS Genet 2014; 10. 10 7 doi: 10.1371/journal.pgen.1004497
  • Zamariola L, De Storme N, Vannerum K, et al. Shugoshins and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana. Plant J. 2014;77(5):782–94. doi: 10.1111/tpj.12432
  • Sakuno T, Hiraoka Y. Rec8 Cohesin: a structural platform for shaping the meiotic chromosomes. Genes (Basel). 2022;13(2):200. doi: 10.3390/genes13020200
  • Sebastian J, Ravi M, Andreuzza S, et al. The plant adherin AtSCC2 is required for embryogenesis and sister‐chromatid cohesion during meiosis in Arabidopsis. Plant J. 2009;59(1):1–13. doi: 10.1111/j.1365-313X.2009.03845.x
  • Wang H, Xu W, Sun Y, et al. The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants. PloS Genet. 2020;16(6):e1008849. doi: 10.1371/journal.pgen.1008849
  • Cai X, Dong FG, Edelmann RE, et al. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci. 2003;116(14):2999–3007. doi: 10.1242/jcs.00601
  • Ito M, Kugou K, Fawcett JA, et al. Meiotic recombination cold spots in chromosomal cohesion sites. Genes Cells. 2014;19(5):359–73. doi: 10.1111/gtc.12138
  • Folco HD, Chalamcharla VR, Sugiyama T, et al. Untimely expression of gametogenic genes in vegetative cells causes uniparental disomy. Nature. 2017;543(7643):126–30. doi: 10.1038/nature21372
  • Nambiar M, Smith GR Pericentromere-Specific Cohesin Complex Prevents Meiotic Pericentric DNA Double-Strand Breaks and Lethal Crossovers. Mol Cell 2018; 71:540–553.e4. 4 doi: 10.1016/j.molcel.2018.06.035
  • Wang J, Yu C, Zhang S, et al. Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. Nat Plants. 2020;6(7):823–37. doi: 10.1038/s41477-020-0697-0
  • Wang J, Niu B, Huang J, et al. The PHD finger protein MMD1/DUET ensures the progression of male meiotic chromosome condensation and directly regulates the expression of the condensin gene CAP-D3. Plant Cell. 2016;28(8):1894–909. doi: 10.1105/tpc.16.00040
  • Li X, Wang H, Wang Y, et al. Comparison of metabolic profiling of arabidopsis inflorescences between landsberg erecta and Columbia, and Meiosis-Defective Mutants by (1)H-NMR Spectroscopy. Phenomics 2021; 1:73–89. 2 doi: 10.1007/s43657-021-00012-3
  • Oliver C, Pradillo M, Corredor E, et al. The dynamics of histone H3 modifications is species-specific in plant meiosis. Planta. 2013;238(1):23–33. doi: 10.1007/s00425-013-1885-1
  • Wang C, Huang J, Li Y, et al. DNA polymerase epsilon binds histone H3.1-H4 and recruits MORC1 to mediate meiotic heterochromatin condensation. Proc Natl Acad Sci U S A. 2022;119(43):e2213540119. doi: 10.1073/pnas.2213540119
  • Wang C, Huang J, Zhang J, et al. DNA polymerase epsilon interacts with SUVH2/9 to repress the expression of genes associated with meiotic DSB hotspot in Arabidopsis. Proc Natl Acad Sci U S A. 2022;119(41):e2208441119. doi: 10.1073/pnas.2208441119
  • Watson ML, Zinn AR, Inoue N, et al. Identification of morc (microrchidia), a mutation that results in arrest of spermatogenesis at an early meiotic stage in the mouse. Proc Natl Acad Sci U S A. 1998;95(24):14361–6. doi: 10.1073/pnas.95.24.14361
  • Pastor WA, Stroud H, Nee K, et al. MORC1 represses transposable elements in the mouse male germline. Nat Commun. 2014;5(1). doi: 10.1038/ncomms6795
  • Weiser NE, Yang DX, Feng S, et al. MORC-1 Integrates Nuclear RNAi and Transgenerational Chromatin Architecture to Promote Germline Immortality. Dev Cell 2017; 41:408–423.e7. 4 doi: 10.1016/j.devcel.2017.04.023
  • Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997;88(3):375–84. doi: 10.1016/S0092-8674(00)81876-0
  • Lambing C, Franklin FC, Wang CR Understanding and Manipulating Meiotic Recombination in Plants. Plant Physiol 2017; 173:1530–1542. 3 10.1104/pp.16.01530
  • Tock AJ, Henderson IR. Hotspots for initiation of meiotic recombination. Front Genet. 2018;9:521. doi: 10.3389/fgene.2018.00521
  • Underwood CJ, Choi K, Lambing C, et al. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res. 2018;28(4):519–31. doi: 10.1101/gr.227116.117
  • Yelina NE, Lambing C, Hardcastle TJ, et al. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 2015;29(20):2183–202. doi: 10.1101/gad.270876.115
  • Yelina N, Diaz P, Lambing C, et al. Epigenetic control of meiotic recombination in plants. Sci China Life Sci. 2015;58(3):223–31. doi: 10.1007/s11427-015-4811-x
  • Yelina NE, Choi K, Chelysheva L, et al. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PloS Genet. 2012;8(8):e1002844. doi: 10.1371/journal.pgen.1002844
  • Melamed-Bessudo C, Levy AA. Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(16):E981–E8. doi: 10.1073/pnas.1120742109
  • Colome-Tatche M, Cortijo S, Wardenaar R, et al. Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci U S A. 2012;109(40):16240–5. doi: 10.1073/pnas.1212955109
  • Fernandes JB, Wlodzimierz P, Henderson IR. Meiotic recombination within plant centromeres. Curr Opin Plant Biol. 2019;48:26–35. doi: 10.1016/j.pbi.2019.02.008
  • Lange J, Yamada S, Tischfield SE, et al. The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 2016; 167:695–708.e16. 3 doi: 10.1016/j.cell.2016.09.035
  • Choi K, Zhao X, Kelly KA, et al. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet. 2013;45(11):1327–36. doi: 10.1038/ng.2766
  • Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet. 2013;14(11):794–806. doi: 10.1038/nrg3573
  • Borde V, de Massy B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr Opin Genet Dev. 2013;23(2):147–55. doi: 10.1016/j.gde.2012.12.002
  • Xie C, Wang W, Tu C, et al. Meiotic recombination: insights into its mechanisms and its role in human reproduction with a special focus on non-obstructive azoospermia. Hum Reprod Update 2022. 28 6 763–797 doi: 10.1093/humupd/dmac024
  • Paiano J, Wu W, Yamada S, et al. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nat Commun. 2020;11(1):857. doi: 10.1038/s41467-020-14654-w
  • Baudat F, Buard J, Grey C, et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science. 2010;327(5967):836–40. doi: 10.1126/science.1183439
  • Choi K, Zhao X, Tock AJ, et al. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 2018;28(4):532–46. doi: 10.1101/gr.225599.117
  • Naish M, Alonge M, Wlodzimierz P, et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science. 2021;374(6569):eabi7489. doi: 10.1126/science.abi7489
  • Petes TD. Meiotic recombination hot spots and cold spots. Nat Rev Genet. 2001;2(5):360–9. doi: 10.1038/35072078
  • Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol. 2016;54:188–97. doi: 10.1016/j.semcdb.2016.01.042
  • Stewart MN, Dawson DS. Changing partners: moving from non-homologous to homologous centromere pairing in meiosis. Trends Genet. 2008;24(11):564–73. doi: 10.1016/j.tig.2008.08.006
  • Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91. doi: 10.1038/35066065
  • Rockmill B, Voelkel-Meiman K, Roeder GS. Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae. Genetics. 2006;174(4):1745–54. doi: 10.1534/genetics.106.058933
  • Si W, Yuan Y, Huang J, et al. Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. New Phytol. 2015;206(4):1491–502. doi: 10.1111/nph.13319
  • Marand AP, Zhao H, Zhang W, et al. Historical meiotic crossover hotspots fueled patterns of evolutionary divergence in rice. Plant Cell. 2019;31(3):645–62. doi: 10.1105/tpc.18.00750
  • Fuentes RR, de Ridder D, van Dijk ADJ, et al. Domestication shapes recombination patterns in tomato. Mol Biol Evol 2022; 39. 39 1 10.1093/molbev/msab287
  • Demirci S, van Dijk ADJ, Perez GS, et al. Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium. Plant J 2017; 89:554–564. 3 doi: 10.1111/tpj.13406
  • Tock AJ, Holland DM, Jiang W, et al. Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation. Genome Res. 2021;31(9):1614–28. doi: 10.1101/gr.273672.120
  • Saintenac C, Faure S, Remay A, et al. Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma. 2011;120(2):185–98. doi: 10.1007/s00412-010-0302-9
  • Mayer KFX, Rogers J, Doležel J, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014; 345:1251788. 6194 doi: 10.1126/science.1251788
  • He Y, Wang M, Dukowic-Schulze S, et al. Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize. Proc Natl Acad Sci U S A. 2017;114(46):12231–6. doi: 10.1073/pnas.1713225114
  • He Y, Wang M, Sun Q, et al. Mapping recombination initiation sites using chromatin immunoprecipitation. Methods Mol Biol 2016; 1429:177–188.
  • Mascher M, Gundlach H, Himmelbach A, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544(7651):427–33. doi: 10.1038/nature22043
  • McConaughy S, Amundsen K, Song Q, et al. Recombination hotspots in soybean [Glycine ma (L.) Merr.] [Glycine max (L.) Merr.]. G3: Genes | Genomes | Genetics. 2023;13. doi: 10.1093/g3journal/jkad075
  • Ma X, Fan L, Zhang Z, et al. Global dissection of the recombination landscape in soybean using a high-density 600K SoySNP array. Plant Biotechnol J. 2023;21(3):606–20. doi: 10.1111/pbi.13975
  • Mirouze M, Lieberman-Lazarovich M, Aversano R, et al. Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(15):5880–5. doi: 10.1073/pnas.1120841109
  • Ellermeier C, Higuchi EC, Phadnis N, et al. Rnai and heterochromatin repress centromeric meiotic recombination. Proc Natl Acad Sci U S A. 2010;107(19):8701–5. doi: 10.1073/pnas.0914160107
  • Zamudio N, Barau J, Teissandier A, et al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015;29(12):1256–70. doi: 10.1101/gad.257840.114
  • Saintenac C, Falque M, Martin OC, et al. Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (triticum aestivum L.). Genetics. 2009;181(2):393–403. doi: 10.1534/genetics.108.097469
  • Kong A, Gudbjartsson DF, Sainz J, et al. A high-resolution recombination map of the human genome. Nat Genet. 2002;31(3):241–7. doi: 10.1038/ng917
  • Giraut L, Falque M, Drouaud J, et al. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PloS Genet. 2011;7(11):e1002354. doi: 10.1371/journal.pgen.1002354
  • Liu S, Yeh CT, Ji T, et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PloS Genet. 2009;5(11):e1000733. doi: 10.1371/journal.pgen.1000733
  • Darrier B, Rimbert H, Balfourier F, et al. High-resolution mapping of crossover events in the hexaploid wheat genome suggests a universal recombination mechanism. Genetics. 2017;206(3):1373–88. doi: 10.1534/genetics.116.196014
  • Buhler C, Borde V, Lichten M, et al. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol. 2007;5(12):e324. doi: 10.1371/journal.pbio.0050324
  • Su Y, Barton AB, Kaback DB. Decreased meiotic reciprocal recombination in subtelomeric regions in Saccharomyces cerevisiae. Chromosoma. 2000;109(7):467–75. doi: 10.1007/s004120000098
  • Barton AB, Pekosz MR, Kurvathi RS, et al. Meiotic recombination at the ends of chromosomes in Saccharomyces cerevisiae. Genetics. 2008;179(3):1221–35. doi: 10.1534/genetics.107.083493
  • Chen SY, Tsubouchi T, Rockmill B, et al. Global analysis of the meiotic crossover landscape. Dev Cell. 2008;15(3):401–15. doi: 10.1016/j.devcel.2008.07.006
  • Salome PA, Bomblies K, Fitz J, et al. The recombination landscape in Arabidopsis thaliana F2 populations. Heredity (Edinb). 2012;108(4):447–55. doi: 10.1038/hdy.2011.95
  • Jensen-Seaman MI, Furey TS, Payseur BA, et al. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004;14(4):528–38. doi: 10.1101/gr.1970304
  • Blitzblau HG, Bell GW, Rodriguez J, et al. Mapping of meiotic single-stranded DNA reveals double-strand-break hotspots near centromeres and telomeres. Curr Biol. 2007;17(23):2003–12. doi: 10.1016/j.cub.2007.10.066
  • McKinley KL, Cheeseman IM. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol. 2016;17(1):16–29. doi: 10.1038/nrm.2015.5
  • Simon L, Voisin M, Tatout C, et al. Structure and function of centromeric and pericentromeric heterochromatin in Arabidopsis thaliana. Front Plant Sci. 2015;6:1049. doi: 10.3389/fpls.2015.01049
  • Eyster C, Chuong HH, Lee CY, et al. The pericentromeric heterochromatin of homologous chromosomes remains associated after centromere pairing dissolves in mouse spermatocyte meiosis. Chromosoma. 2019;128(3):355–67. doi: 10.1007/s00412-019-00708-6
  • Da Ines O, Abe K, Goubely C, et al. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana. PloS Genet. 2012;8(4):e1002636. doi: 10.1371/journal.pgen.1002636
  • Dernburg AF, Sedat JW, Hawley RS. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996;86(1):135–46. doi: 10.1016/S0092-8674(00)80084-7
  • Griffiths S, Sharp R, Foote TN, et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature. 2006;439(7077):749–52. doi: 10.1038/nature04434
  • Da Ines O, White CI. Centromere associations in meiotic chromosome pairing. Ann Rev Genet. 2015;49(1):95–114. doi: 10.1146/annurev-genet-112414-055107
  • Zhang J, Han F. Centromere pairing precedes meiotic chromosome pairing in plants. Sci China Life Sci. 2017;60(11):1197–202. doi: 10.1007/s11427-017-9109-y
  • Kurdzo EL, Dawson DS Centromere pairing – tethering partner chromosomes in meiosis I. FEBS J 2015; 282:2445–2457. 13 doi: 10.1111/febs.13280
  • Kurdzo EL, Obeso D, Chuong H, et al. Meiotic centromere coupling and pairing function by two separate mechanisms in Saccharomyces cerevisiae. Genetics. 2017;205(2):657–71. doi: 10.1534/genetics.116.190264
  • Hawley RS, Qiao H, Chen JK, et al. Interplay between synaptonemal complex, homologous recombination, and centromeres during Mammalian Meiosis. PloS Genet 2012; 8. 6 e1002790 doi: 10.1371/journal.pgen.1002790
  • Hawley RS, Bisig CG, Guiraldelli MF, et al. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in Mouse Spermatocytes. PloS Genet 2012; 8. 6 e1002701 doi: 10.1371/journal.pgen.1002701
  • Hunter N, Hopkins J, Hwang G, et al. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes. PloS Genet 2014; 10. 10 7 doi: 10.1371/journal.pgen.1004413
  • Chuong H, Dawson DS, Stearns T. Meiotic cohesin promotes pairing of nonhomologous centromeres in early meiotic prophase. Mol Biol Cell. 2010;21(11):1799–809. doi: 10.1091/mbc.e09-05-0392
  • Tsubouchi T, AJ M, Roeder GS Initiation of meiotic chromosome synapsis at centromeres in budding yeast. Genes Dev 2008; 22:3217–3226. 22 doi: 10.1101/gad.1709408
  • Bolanos-Villegas P, De K, Pradillo M, et al. In favor of establishment: regulation of chromatid cohesion in plants. Front Plant Sci. 2017;8. doi: 10.3389/fpls.2017.00846
  • Zhang J, Pawlowski WP, Han F. Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize. Plant Cell. 2013;25(10):3900–9. doi: 10.1105/tpc.113.117846
  • Martinez-Perez E, Shaw P, Moore G. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature. 2001;411(6834):204–7. doi: 10.1038/35075597
  • Martinez‐Perez E, Shaw P, Aragon‐Alcaide L, et al. Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J. 2003;36(1):21–9. doi: 10.1046/j.1365-313X.2003.01853.x
  • Greer E, Martin AC, Pendle A, et al. The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell 2012; 24:152–162. 1 10.1105/tpc.111.094771
  • Shakirov EV, Chen JJ, Shippen DE Plant telomere biology: The green solution to the end-replication problem. Plant Cell 2022; 34:2492–2504. 7 10.1093/plcell/koac122
  • Roberts NY, Osman K, Armstrong SJ. Telomere Distribution and Dynamics in Somatic and Meiotic Nuclei of Arabidopsis thaliana. Cytogenet Genome Res. 2009;124(3–4):193–201. doi: 10.1159/000218125
  • Tomita K, Cooper JP. The telomere bouquet controls the meiotic spindle. Cell. 2007;130(1):113–26. doi: 10.1016/j.cell.2007.05.024
  • Koszul R, Kleckner N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol. 2009;19(12):716–24. doi: 10.1016/j.tcb.2009.09.007
  • Mytlis A, Levy K, Elkouby YM. The many faces of the bouquet centrosome MTOC in meiosis and germ cell development. Curr Opin Cell Biol. 2023;81:102158. doi: 10.1016/j.ceb.2023.102158
  • Klutstein M, Fennell A, Fernandez-Alvarez A, et al. The telomere bouquet regulates meiotic centromere assembly. Nat Cell Biol. 2015;17(4):458–69. doi: 10.1038/ncb3132
  • Chikashige Y, Haraguchi T, Hiraoka Y. Another way to move chromosomes. Chromosoma. 2007;116(6):497–505. doi: 10.1007/s00412-007-0114-8
  • Chikashige Y, Tsutsumi C, Yamane M, et al. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell. 2006;125(1):59–69. doi: 10.1016/j.cell.2006.01.048
  • Chikashige Y, Yamane M, Okamasa K, et al. Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. J Cell Bio. 2009;187(3):413–27. doi: 10.1083/jcb.200902122
  • Stewart CL, Burke B. The missing LINC: a mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus. 2014;5(1):3–10. doi: 10.4161/nucl.27819
  • Horn HF, Kim DI, Wright GD, et al. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J Cell Bio 2013; 202:1023–1039. 7 10.1083/jcb.201304004
  • Ding X, Xu R, Yu J, et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell. 2007;12(6):863–72. doi: 10.1016/j.devcel.2007.03.018
  • Spindler M-C, Redolfi J, Helmprobst F, et al. Electron tomography of mouse LINC complexes at meiotic telomere attachment sites with and without microtubules. Commun Biol. 2019;2(1). doi: 10.1038/s42003-019-0621-1
  • Jantsch V, Link J, Leubner M, et al. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in Mammalian Meiotic LINC Complex Formation and Function. PloS Genet 2014; 10. 10 2 doi: 10.1371/journal.pgen.1004099
  • Morimoto A, Shibuya H, Zhu X, et al. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J Cell Bio 2012; 198:165–172. 2 10.1083/jcb.201204085
  • Garner KEL, Salter A, Lau CK, et al. The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein. J Cell Bio. 2023;222(5):222. doi: 10.1083/jcb.202204042
  • Agrawal R, Gillies JP, Zang JL, et al. The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor. Elife. 2022;11:11. doi: 10.7554/eLife.78201
  • Da Ines O, Gallego ME, White CI. Recombination-independent mechanisms and pairing of homologous chromosomes during meiosis in plants. Mol Plant. 2014;7(3):492–501. doi: 10.1093/mp/sst172
  • Armstrong SJ, Franklin FC, Jones GH. Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci. 2001;114(23):4207–17. doi: 10.1242/jcs.114.23.4207
  • Zhang F, Ma L, Zhang C, et al. The SUN Domain proteins OsSUN1 and OsSUN2 play critical but partially redundant roles in meiosis. Plant Physiol. 2020;183(4):1517–30. doi: 10.1104/pp.20.00140
  • Varas J, Graumann K, Osman K, et al. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. Plant J. 2015;81(2):329–46. doi: 10.1111/tpj.12730
  • Corredor E, Lukaszewski AJ, Pachon P, et al. Terminal Regions of Wheat Chromosomes Select Their Pairing Partners in Meiosis. Genetics 2007; 177:699–706. 2 doi: 10.1534/genetics.107.078121
  • Higgins JD, Perry RM, Barakate A, et al. Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. Plant Cell. 2012;24(10):4096–109. doi: 10.1105/tpc.112.102483
  • Golubovskaya IN, Harper LC, Pawlowski WP, et al. The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics. 2002;162(4):1979–93. doi: 10.1093/genetics/162.4.1979
  • Jiang P, Lian B, Liu C, et al. 21-nt phasiRnas direct target mRNA cleavage in rice male germ cells. Nat Commun. 2020;11(1):5191. doi: 10.1038/s41467-020-19034-y
  • Wang Y, Cheng Z, Lu P, et al. Molecular cell biology of male meiotic chromosomes and isolation of male meiocytes in Arabidopsis thaliana. Methods Mol Biol 2014; 1110:217–230.
  • Wang C, Li X, Huang J, et al. Isolation of meiocytes and cytological analyses of male meiotic chromosomes in Soybean, Lettuce, and Maize. Methods Mol Biol 2023; 2686:219–239.
  • Long J, Walker J, She W, et al. Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science. 2021;373(6550). doi: 10.1126/science.abh0556
  • Walker J, Gao H, Zhang J, et al. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat Genet. 2018;50(1):130–7. doi: 10.1038/s41588-017-0008-5
  • Smallwood SA, Lee HJ, Angermueller C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20. doi: 10.1038/nmeth.3035
  • Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10(1):1930. doi: 10.1038/s41467-019-09982-5
  • He S, Feng X. DNA methylation dynamics during germline development. J Integr Plant Biol. 2022;64(12):2240–51. doi: 10.1111/jipb.13422
  • Wang L, Zheng K, Zeng L, et al. Reinforcement of CHH methylation through RNA-directed DNA methylation ensures sexual reproduction in rice. Plant Physiol. 2022 ;188(2):1189–1209. doi:10.1093/plphys/kiab531
  • Huang J, Wang C, Li X, et al. Conservation and divergence in the Meiocyte sRnaomes of Arabidopsis, soybean, and cucumber. Plant Physiol. 2020;182(1):301–17. doi: 10.1104/pp.19.00807
  • Huang J, Wang C, Wang H, et al. Meiocyte-Specific and AtSPO11-1–Dependent Small RNAs and Their Association with Meiotic Gene Expression and Recombination. Plant Cell 2019; 31:444–464. 2 doi: 10.1105/tpc.18.00511
  • Wang L, Xu Z, Khawar MB, et al. The histone codes for meiosis. Reproduction. 2017;154(3):R65–R79. doi: 10.1530/REP-17-0153
  • Gaysinskaya V, Miller BF, De Luca C, et al. Transient reduction of DNA methylation at the onset of meiosis in male mice. Epigenetics Chromatin 2018; 11:15. 1 doi: 10.1186/s13072-018-0186-0
  • Shilo S, Melamed-Bessudo C, Dorone Y, et al. DNA crossover motifs associated with epigenetic modifications delineate open chromatin regions in Arabidopsis. Plant Cell. 2015;27(9):2427–36. doi: 10.1105/tpc.15.00391