948
Views
0
CrossRef citations to date
0
Altmetric
Review

Mechanobiology of the nucleus during the G2-M transition

& ORCID Icon
Article: 2330947 | Received 30 Nov 2023, Accepted 09 Mar 2024, Published online: 27 Mar 2024

References

  • Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature [Internet]. 2011;475(7356):316–16. doi: 10.1038/nature10316.
  • Orr AW, Helmke BP, Blackman BR, et al. Mechanisms of mechanotransduction. Dev Cell [Internet]. 2006;10(1):11–20. doi: 10.1016/j.devcel.2005.12.006
  • Discher DE, Janmey P, Wang Y. Tissue cells feel and respond to the stiffness of their substrate. Science [Internet]. 2005;310(5751):1139–1143. doi: 10.1126/science.1116995.
  • Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell [Internet]. 2009;139(5):891–906. doi: 10.1016/j.cell.2009.10.027
  • Lammerding J. Mechanics of the nucleus. Compr Physiol [Internet]. 2011;783–807. doi: 10.1002/cphy.c100038.
  • Dahl KN, Ribeiro AJS, Lammerding J. Nuclear shape, mechanics, and mechanotransduction. Circ Res [Internet]. 2008;102:1307–1318. doi: 10.1161/CIRCRESAHA.108.173989.
  • Uroz M, Wistorf S, Serra-Picamal X, et al. Regulation of cell cycle progression by cell–cell and cell–matrix forces. Nat Cell Biol. 646–654. 2018;20 6. doi: 10.1038/s41556-018-0107-2
  • Gudipaty SA, Lindblom J, Loftus PD, et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature. 2017;543(7643):118–121. doi: 10.1038/nature21407
  • Donker L, Houtekamer R, Vliem M, et al. A mechanical G2 checkpoint controls epithelial cell division through E-cadherin-mediated regulation of Wee1-Cdk1. Cell Rep [Internet]. 2022;41(2):111475. doi: 10.1016/j.celrep.2022.111475
  • Dantas M, Oliveira A, Aguiar P, et al. Nuclear tension controls mitotic entry by regulating cyclin B1 nuclear translocation. J Cell Bio [Internet]. 2022;221(12):e202205051. doi: 10.1083/jcb.202205051
  • Aureille J, Buffière‐Ribot V, Harvey BE, et al. Nuclear envelope deformation controls cell cycle progression in response to mechanical force. EMBO Rep. 2019;20(9). doi: 10.15252/embr.201948084
  • Belaadi N, Pernet L, Aureille J, et al. SUN2 regulates mitotic duration in response to extracellular matrix rigidity. Proc Natl Acad Sci [Internet]. 2022;119(45):e2116167119. doi: 10.1073/pnas.2116167119
  • Nunes V, Dantas M, Castro D, et al. Centrosome–nuclear axis repositioning drives the assembly of a bipolar spindle scaffold to ensure mitotic fidelity. Mol Biol Cell [Internet]. 2020;31(16):1675–1690. doi: 10.1091/mbc.E20-01-0047
  • Hatte G, Prigent C, Tassan J-P. Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue. J Cell Sci [Internet]. 2018;131:jcs208736. doi: 10.1242/jcs.208736.
  • Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171(6):1397–1410.e14. doi: 10.1016/j.cell.2017.10.008
  • Zimmerli CE, Allegretti M, Rantos V, et al. Nuclear pores dilate and constrict in cellulo. Science. 2021;374(6573):80–. doi: 10.1126/science.abd9776
  • Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol [Internet]. 2017;18(12):717–727. doi: 10.1038/nrm.2017.101.
  • Kim N-G, Koh E, Chen X, et al. E-cadherin mediates contact inhibition of proliferation through hippo signaling-pathway components. Proc Natl Acad Sci [Internet]. 2011;108(29):11930–11935. doi: 10.1073/pnas.1103345108
  • Chen X, Deng Z, He Y, et al. Mechanical strain promotes proliferation of adipose-derived stem cells through the integrin β1-mediated RhoA/Myosin light chain pathway. Tissue Eng Part A [Internet]. 2020;26(17–18):939–952. doi: 10.1089/ten.tea.2019.0266
  • Benham-Pyle BW, Sim JY, Hart KC, et al. Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis. Fässler R, editor. eLife [Internet]. 2016;5:e19799. doi: 10.7554/eLife.19799.
  • Funk LC, Zasadil LM, Weaver BA Review living in CIN: Mitotic infidelity and its consequences for tumor promotion and suppression. Dev Cell. 2016;39 6 638–652. doi: 10.1016/j.devcel.2016.10.023
  • Dey G, Baum B. Nuclear envelope remodelling during mitosis. Curr Opin Cell Biol [Internet]. 2021;70:67–74. doi: 10.1016/j.ceb.2020.12.004.
  • Tse HTK, Weaver WM, Di Carlo D, et al. Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments. Lam W, editor. PLoS One. 2012;7(6):e38986. doi: 10.1371/journal.pone.0038986
  • Lancaster OM, Le Berre M, Dimitracopoulos A, et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev Cell [Internet]. 2013;25(3):270–283. doi: 10.1016/j.devcel.2013.03.014
  • Taubenberger AV, Baum B, Matthews HK. The mechanics of mitotic cell rounding [internet]. Front Cell Dev Biol. 2020;8:687. doi: 10.3389/fcell.2020.00687.
  • Tang Z, Hu Y, Wang Z, et al. MechanicaL forces program the orientation of cell division during airway tube morphogenesis. Dev Cell [Internet]. 2018;44(3):313–325.e5. doi: 10.1016/j.devcel.2017.12.013
  • Sorce B, Escobedo C, Toyoda Y, et al. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun [Internet]. 2015;6(1):8872. doi: 10.1038/ncomms9872
  • Kelkar M, Bohec P, Smith MB, et al. Spindle reorientation in response to mechanical stress is an emergent property of the spindle positioning mechanisms. Proc Natl Acad Sci [Internet]. 2022;119(26):e2121868119. doi: 10.1073/pnas.2121868119
  • di Pietro F, Echard A, Morin X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep [Internet]. 2016;17(8):1106–1130. doi: 10.15252/embr.201642292.
  • Antonin W, Neumann H. Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol. 2016;40:15–22. doi: 10.1016/j.ceb.2016.01.013
  • Maddox PS, Portier N, Desai A, et al. Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc Natl Acad Sci [Internet]. 2006;103(41):15097–15102. doi: 10.1073/pnas.0606993103
  • Zlotek-Zlotkiewicz E, Monnier S, Cappello G, et al. Optical volume and mass measurements show that mammalian cells swell during mitosis. J Cell Bio [Internet]. 2015;211(4):765–774. doi: 10.1083/jcb.201505056
  • Son S, Kang JH, Oh S, et al. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J Cell Bio [Internet]. 2015;211(4):757–763. doi: 10.1083/jcb.201505058
  • Sun M, Biggs R, Hornick J, et al. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. bioRxiv [Internet]. 2018;384982. http://biorxiv.org/content/early/2018/08/04/384982.abstract
  • Stephens AD, Banigan EJ, Adam SA, et al. Chromatin and lamin a determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell [Internet]. 2017;28(14):1984–1996. doi: 10.1091/mbc.e16-09-0653
  • Lammerding J, Fong LG, Ji JY, et al. Lamins A and C but Not Lamin B1 Regulate Nuclear Mechanics*. J Biol Chem [Internet]. 2006;281(35):25768–25780. doi: 10.1074/jbc.M513511200
  • Jones MC, Askari JA, Humphries JD, et al. Cell adhesion is regulated by CDK1 during the cell cycle. J Cell Bio [Internet]. 2018;217(9):3203–3218. doi: 10.1083/jcb.201802088
  • Gavet O, Pines J. Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Bio [Internet]. 2010;189(2):247–259. doi: 10.1083/jcb.200909144.
  • Gheghiani L, Loew D, Lombard B, et al. PLK1 activation in late G2 sets up commitment to mitosis. Cell Rep. 2017;19(10):2060–2073. doi: 10.1016/j.celrep.2017.05.031
  • Linder MI, Köhler M, Boersema P, et al. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev Cell [Internet]. 2017;43(2):141–156.e7. doi: 10.1016/j.devcel.2017.08.020
  • Heald R, McKeon F. Mutations of phosphorylation sites in lamin a that prevent nuclear lamina disassembly in mitosis. Cell. 1990;61(4):579–589. doi: 10.1016/0092-8674(90)90470-Y
  • Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 2010;18(4):533–543. doi: 10.1016/j.devcel.2010.02.013
  • Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science [Internet]. 2013;339(6121):786–791. doi: 10.1126/science.1232458
  • Carmo-Fonseca M. The contribution of nuclear compartmentalization to gene regulation. Cell [Internet]. 2002;108(4):513–521. doi: 10.1016/S0092-8674(02)00650-5.
  • Haider A, Wei Y-C, Lim K, et al. PCYT1A regulates phosphatidylcholine homeostasis from the inner nuclear membrane in response to membrane stored curvature elastic stress. Dev Cell [Internet]. 2018;45(4):481–495.e8. doi: 10.1016/j.devcel.2018.04.012
  • Hetzer MW, Walther TC, Mattaj IW. PUSHING the ENVELOPE: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol [Internet]. 2005;21(1):347–380. doi: 10.1146/annurev.cellbio.21.090704.151152.
  • Stewart CL, Roux KJ, Burke B. Blurring the boundary: thE nuclear envelope extends its reach. Science [Internet]. 2007;318(5855):1408–1412. http://science.sciencemag.org/content/318/5855/1408.abstract
  • Niethammer P. Components and mechanisms of nuclear mechanotransduction. Annu Rev Cell Dev Biol [Internet]. 2021;37(1):233–256. doi: 10.1146/annurev-cellbio-120319-030049.
  • Lomakin AJ, Cattin CJ, Cuvelier D, et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science. 2020;370(6514).
  • Venturini V, Pezzano F, Castro FC, et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science. 2020;370(6514):80–. doi: 10.1126/science.aba2644
  • Enyedi B, Jelcic M, Niethammer P. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell. 2016;165(5):1160–1170. doi: 10.1016/j.cell.2016.04.016
  • Splinter D, Tanenbaum ME, Lindqvist A, et al. Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry. PLoS Biol [Internet]. 2010;8(4):e1000350. doi: 10.1371/journal.pbio.1000350
  • Bolhy S, Bouhlel I, Dultz E, et al. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Bio [Internet]. 2011;192(5):855–871. doi: 10.1083/jcb.201007118
  • Hu D-K, Baffet AD, Nayak T, et al. Dynein Recruitment to Nuclear Pores Activates Apical Nuclear Migration and Mitotic Entry in Brain Progenitor Cells. Cell [Internet]. 2013;154(6):1300–1313. doi: 10.1016/j.cell.2013.08.024
  • Salina D, Bodoor K, Eckley DM, et al. Cytoplasmic Dynein as a facilitator of nuclear envelope breakdown. Cell [Internet]. 2002;108(1):97–107. doi: 10.1016/S0092-8674(01)00628-6
  • Beaudouin J, Gerlich D, Daigle N, et al. Nuclear envelope breakdown proceeds by Microtubule-Induced Tearing of the Lamina. Cell [Internet]. 2002;108(1):83–96. doi: 10.1016/S0092-8674(01)00627-4
  • Champion L, Pawar S, Luithle N, et al. Dissociation of membrane–chromatin contacts is required for proper chromosome segregation in mitosis. Mol Biol Cell. 2019;30:427–440. 4 10.1091/mbc.E18-10-0609
  • Raab M, Gentili M, de Belly H, et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science [Internet]. 2016;352(6283):359–362. doi: 10.1126/science.aad7611
  • Zhang Q, Tamashunas AC, Agrawal A, et al. Local, transient tensile stress on the nuclear membrane causes membrane rupture. Mol Biol Cell [Internet]. 2018;30(7):899–906. doi: 10.1091/mbc.E18-09-0604
  • Haque F, Lloyd DJ, Smallwood DT, et al. SUN1 interacts with nuclear lamin a and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol [Internet]. 2006;26(10):3738–3751. doi: 10.1128/MCB.26.10.3738-3751.2006
  • Liu Q, Pante N, Misteli T, et al. Functional association of Sun1 with nuclear pore complexes. J Cell Biol [Internet]. 2007;178(5):785–798. Available from: http://jcb.rupress.org/content/178/5/785.abstract
  • Turgay Y, Champion L, Balazs C, et al. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. J Cell Bio [Internet]. 2014;204(7):1099–1109. doi: 10.1083/jcb.201310116
  • Haque F, Mazzeo D, Patel JT, et al. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes *. J Biol Chem [Internet]. 2010;285(5):3487–3498. doi: 10.1074/jbc.M109.071910
  • Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172(1):41–53. Available from: http://jcb.rupress.org/content/172/1/41.abstract
  • Starr DA, Fridolfsson HN. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH Nuclear-Envelope Bridges. Annu Rev Cell Dev Biol [Internet]. 2010;26(1):421–444. doi: 10.1146/annurev-cellbio-100109-104037.
  • Lombardi ML, Jaalouk DE, Shanahan CM, et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton *. J Biol Chem [Internet]. 2011;286(30):26743–26753. doi: 10.1074/jbc.M111.233700
  • Lombardi ML, Lammerding JKTL. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem Soc Trans. 2011;39(6):1729–1734. doi: 10.1042/BST20110686
  • Gurusaran M, Davies OR. A molecular mechanism for LINC complex branching by structurally diverse SUN-KASH 6: 6 assemblies. King MC, wolberger C, Zinn-Justin S, editors. eLife [Internet]. 2021;10:e60175. doi: 10.7554/eLife.60175.
  • Domkam N. Force transmission and SUN-KASH higher-order assembly in the LINC complex models. Biophys J [Internet]. 2023;122(3):464a. doi: 10.1016/j.bpj.2022.11.2488.
  • Gonçalves JC, Quintremil S, Yi J, et al. Nesprin-2 recruitment of BicD2 to the nuclear envelope controls Dynein/Kinesin-mediated neuronal migration in vivo. Curr Biol [Internet]. 2020;30(16):3116–3129.e4. doi: 10.1016/j.cub.2020.05.091
  • Leong EL, Khaing NT, Cadot B, et al. Nesprin-1 LINC complexes recruit microtubule cytoskeleton proteins and drive pathology in Lmna-mutant striated muscle. Hum Mol Genet. 2023;32(2):177–191. doi: 10.1093/hmg/ddac179
  • Lima JT, Pereira AJ, Ferreira JG. The LINC complex ensures accurate centrosome positioning during prophase. Life Sci Alliance. 2024;7(4). doi: 10.26508/lsa.202302404
  • Wilhelmsen K, Litjens SHM, Kuikman I, et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Bio [Internet]. 2005;171(5):799–810. doi: 10.1083/jcb.200506083
  • Roux KJ, Crisp ML, Liu Q, et al. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci [Internet]. 2009;106(7):2194–2199. doi: 10.1073/pnas.0808602106
  • Versaevel M, Grevesse T, Gabriele S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun [Internet]. 2012;3(1):671. doi: 10.1038/ncomms1668.
  • Kim J-K, Louhghalam A, Lee G, et al. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun [Internet]. 2017;8(1):2123. doi: 10.1038/s41467-017-02217-5
  • Chambliss AB, Khatau SB, Erdenberger N, et al. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci Rep [Internet]. 2013;3(1):1087. doi: 10.1038/srep01087
  • Versaevel M, Braquenier J-B, Riaz M, et al. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Sci Rep [Internet]. 2014;4(1):7362. doi: 10.1038/srep07362
  • Stiff T, Echegaray-Iturra FR, Pink HJ, et al. Prophase-specific perinuclear actin coordinates centrosome separation and positioning to ensure accurate chromosome segregation. Cell Rep [Internet]. 2020;31(8):107681. doi: 10.1016/j.celrep.2020.107681
  • Muhlhausser P, Kutay U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J Cell Bio [Internet]. 2007;178(4):595–610. doi: 10.1083/jcb.200703002.
  • Booth AJ, Yue Z, Eykelenboom JK, et al. Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis. Elife [Internet]. 2019;8. https://elifesciences.org/articles/46902
  • Yoshida MW, Oguri N, Goshima G. Physcomitrium patens SUN2 mediates MTOC association to the nuclear envelope and facilitates chromosome alignment during spindle assembly. Plant Cell Physiol [Internet]. 2023;pcad074. doi: 10.1093/pcp/pcad074.
  • Berk JM, Tifft KE, Wilson KL. The nuclear envelope LEM-domain protein emerin. Nucleus [Internet]. 2013;4(4):298–314. doi: 10.4161/nucl.25751.
  • Guilluy C, Osborne LD, Van Landeghem L, et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol [Internet]. 2014;16(4):376–381. doi: 10.1038/ncb2927
  • Tifft KE, Bradbury KA, Wilson KL. Tyrosine phosphorylation of nuclear-membrane protein emerin by src, Abl and other kinases. J Cell Sci [Internet]. 2009;122(20):3780–3790. doi: 10.1242/jcs.048397.
  • Rowat AC, Lammerding J, Ipsen JH. Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J [Internet]. 2006;91(12):4649–4664. doi: 10.1529/biophysj.106.086454.
  • Dubińska-Magiera M, Kozioł K, Machowska M, et al. Emerin is required for proper nucleus reassembly after mitosis: implications for new pathogenetic mechanisms for laminopathies detected in EDMD1 patients. Cells. 2019;8(3):240. doi: 10.3390/cells8030240
  • Salpingidou G, Rzepecki R, Kiseleva E, et al. NEP-A and NEP-B both contribute to nuclear pore formation in xenopus eggs and oocytes. J Cell Sci [Internet]. 2008;121(5):706–716. doi: 10.1242/jcs.019968
  • Liu J, Lee KK, Segura-Totten M, et al. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci [Internet]. 2003;100(8):4598–4603. doi: 10.1073/pnas.0730821100
  • Zheng R, Ghirlando R, Lee MS, et al. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci [Internet]. 2000;97(16):8997–9002. doi: 10.1073/pnas.150240197
  • Torras-Llort M, Medina-Giró S, Escudero-Ferruz P, et al. A fraction of barrier-to-autointegration factor (BAF) associates with centromeres and controls mitosis progression. Commun Biol [Internet]. 2020;3(1):454. doi: 10.1038/s42003-020-01182-y
  • Margalit A, Segura-Totten M, Gruenbaum Y, et al. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc Natl Acad Sci [Internet]. 2005;102(9):3290–3295. doi: 10.1073/pnas.0408364102
  • Yang L, Guan T, Gerace L. Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. J Cell Bio [Internet]. 1997;139(5):1077–1087. doi: 10.1083/jcb.139.5.1077.
  • Dubińska-Magiera M, Chmielewska M, Kozioł K, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma [Internet]. 2016;253(3):943–956. doi: 10.1007/s00709-015-0861-y
  • Patil S, Deshpande S, Sengupta K. Nuclear envelope protein lamin B receptor protects the genome from chromosomal instability and tumorigenesis. Hum Mol Genet [Internet]. 2023;32(5):745–763. doi: 10.1093/hmg/ddac235.
  • Mazzanti M, Bustamante JO, Oberleithner H. Electrical dimension of the nuclear envelope. Physiol Rev [Internet]. 2001;81(1):1–19. doi: 10.1152/physrev.2001.81.1.1.
  • Enyedi B, Niethammer P. Nuclear membrane stretch and its role in mechanotransduction. Nucleus [Internet]. 2017;8(2):156–161. doi: 10.1080/19491034.2016.1263411.
  • Payne C, Rawe V, Ramalho-Santos J, et al. Preferentially localized dynein and perinuclear dynactin associate with nuclear pore complex proteins to mediate genomic union during mammalian fertilization. J Cell Sci [Internet]. 2003;116(23):4727–4738. doi: 10.1242/jcs.00784
  • Cai Y, Singh BB, Aslanukov A, et al. The docking of Kinesins, KIF5B and KIF5C, to ran-binding protein 2 (RanBP2) is mediated via a novel RanBP2 Domain*210. J Biol Chem [Internet]. 2001;276(45):41594–41602. doi: 10.1074/jbc.M104514200
  • Splinter D, Razafsky DS, Schlager MA, et al. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell [Internet]. 2012;23(21):4226–4241. doi: 10.1091/mbc.e12-03-0210
  • Hashizume C, Moyori A, Kobayashi A, et al. Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle [Internet]. 2013;12(24):3804–3816. doi: 10.4161/cc.26671
  • Kutay U, Jühlen R, Antonin W. Mitotic disassembly and reassembly of nuclear pore complexes. Trends Cell Biol [Internet]. 2021;31(12):1019–1033. doi: 10.1016/j.tcb.2021.06.011.
  • Laurell E, Beck K, Krupina K, et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell [Internet]. 2011;144(4):539–550. doi: 10.1016/j.cell.2011.01.012
  • Dultz E, Zanin E, Wurzenberger C, et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Bio [Internet]. 2008;180(5):857–865. doi: 10.1083/jcb.200707026
  • Matsuda A, Mofrad MRK. On the nuclear pore complex and its emerging role in cellular mechanotransduction. APL Bioeng [Internet]. 2022;6(1):11504. doi: 10.1063/5.0080480.
  • Andreu I, Granero-Moya I, Chahare NR, et al. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol [Internet]. 2022;24(6):896–905. doi: 10.1038/s41556-022-00927-7
  • Lammerding J, Schulze PC, Takahashi T, et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest [Internet]. 2004;113(3):370–378. doi: 10.1172/JCI200419670
  • Goldman RD, Gruenbaum Y, Moir RD, et al. Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 2002;16(5):533–547. doi: 10.1101/gad.960502
  • Liu SY, Ikegami K. Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Nucleus [Internet]. 2020;11(1):299–314. doi: 10.1080/19491034.2020.1832734.
  • Gruenbaum Y, Margalit A, Goldman RD, et al. The nuclear lamina comes of age. Nat Rev Mol Cell Biol [Internet]. 2005;6(1):21–31. doi: 10.1038/nrm1550
  • Briand N, Collas P. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol [Internet]. 2020;21(1):85. doi: 10.1186/s13059-020-02003-5.
  • Guelen L, Pagie L, Brasset E, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature [Internet]. 2008;453(7197):948–951. doi: 10.1038/nature06947
  • Shah PP, Keough KC, Gjoni K, et al. An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biol [Internet]. 2023;24(1):16. doi: 10.1186/s13059-023-02849-5
  • De Vos WH, Houben F, Hoebe RA, et al. Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A–type lamins. Biochim Biophys Acta - Gen Subj [Internet]. 2010;1800(4):448–458. https://www.sciencedirect.com/science/article/pii/S0304416510000073
  • Ho CY, Lammerding J. Lamins at a glance. J Cell Sci [Internet]. 2012;125(9):2087–2093. doi: 10.1242/jcs.087288.
  • Dahl KN, Scaffidi P, Islam MF, et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci [Internet]. 2006;103(27):10271–10276. doi: 10.1073/pnas.0601058103
  • Pajerowski JD, Dahl KN, Zhong FL, et al. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A [Internet]. 2007;104(40):15619–15624. doi: 10.1073/pnas.0702576104
  • Earle AJ, Kirby TJ, Fedorchak GR, et al. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nat Mater [Internet]. 2020;19(4):464–473. doi: 10.1038/s41563-019-0563-5
  • Harada T, Swift J, Irianto J, et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Bio [Internet]. 2014;204(5):669–682. doi: 10.1083/jcb.201308029
  • Bera M, Kotamarthi HC, Dutta S, et al. Characterization of unfolding mechanism of human lamin a ig Fold by single-molecule force spectroscopy–implications in EDMD. Biochemistry [Internet]. 2014;53(46):7247–7258. doi: 10.1021/bi500726f
  • Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. doi: 10.1126/science.1240104
  • Buxboim A, Swift J, Irianto J, et al. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to Actomyosin. Curr Biol [Internet]. 2014;24(16):1909–1917. doi: 10.1016/j.cub.2014.07.001
  • Peter M, Nakagawa J, Dorée M, et al. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell. 1990;61(4):591–602. doi: 10.1016/0092-8674(90)90471-P
  • Ward GE, Kirschner MW. Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C. Cell [Internet]. 1990;61(4):561–577. doi: 10.1016/0092-8674(90)90469-U.
  • Panorchan P, Schafer BW, Wirtz D, et al. Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina *. J Biol Chem [Internet]. 2004;279(42):43462–43467. doi: 10.1074/jbc.M402474200
  • Qi R, Xu N, Wang G, et al. The lamin-A/C-LAP2α-BAF1 protein complex regulates mitotic spindle assembly and positioning. J Cell Sci. 2015;128(15):2830–2841. doi: 10.1242/jcs.164566
  • Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet [Internet]. 2000;9(1):109–112. doi: 10.1093/hmg/9.1.109.
  • Ranade D, Koul S, Thompson J, et al. Chromosomal aneuploidies induced upon lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma. 2017;126(2):223–244. doi: 10.1007/s00412-016-0580-y
  • Kuga T, Nie H, Kazami T, et al. Lamin B2 prevents chromosome instability by ensuring proper mitotic chromosome segregation. Oncogenesis. 2014;3(3):e94. doi: 10.1038/oncsis.2014.6
  • Mewborn SK, Puckelwartz MJ, Abuisneineh F, et al. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS One [InternetAvailable from]. 2010;5(12):e14342. doi: 10.1371/journal.pone.0014342
  • Link J, Paouneskou D, Velkova M, et al. Transient and partial nuclear lamina disruption promotes chromosome movement in early meiotic prophase. Dev Cell [Internet]. 2018;45(2):212–225.e7. doi: 10.1016/j.devcel.2018.03.018
  • Chu C-T, Chen Y-H, Chiu W-T, et al. Tyrosine phosphorylation of lamin A by Src promotes disassembly of nuclear lamina in interphase. Life Sci Alliance [Internet]. 2021;4(10):e202101120. doi: 10.26508/lsa.202101120
  • Capo-Chichi CD, Yeasky TM, Smith ER, et al. Nuclear envelope structural defect underlies the main cause of aneuploidy in ovarian carcinogenesis. BMC Cell Biol [Internet]. 2016;17(1):37. doi: 10.1186/s12860-016-0114-8
  • Dechat T, Shimi T, Adam SA, et al. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci [Internet]. 2007;104(12):4955–4960. doi: 10.1073/pnas.0700854104
  • Smythe C, Jenkins HE, Hutchison CJ. Incorporation of the nuclear pore basket protein Nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of xenopus eggs. EMBO J [Internet]. 2000;19(15):3918–3931. doi: 10.1093/emboj/19.15.3918.
  • Al-Haboubi T, Shumaker DK, Köser J, et al. Distinct association of the nuclear pore protein Nup153 with A- and B-type lamins. Nucleus [Internet]. 2011;2(5):500–509. doi: 10.4161/nucl.2.5.17913
  • Lussi YC, Hügi I, Laurell E, et al. The nucleoporin Nup88 is interacting with nuclear lamin a. Mol Biol Cell [Internet]. 2011;22(7):1080–1090. doi: 10.1091/mbc.e10-05-0463
  • Guo Y, Kim Y, Shimi T, et al. Concentration-dependent lamin assembly and its roles in the localization of other nuclear proteins. Mol Biol Cell [Internet]. 2014;25(8):1287–1297. doi: 10.1091/mbc.e13-11-0644
  • Guo Y, Zheng Y, Magin TM. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell. 2015;26(19):3379–3389. doi: 10.1091/mbc.E15-07-0482
  • Nava MM, Miroshnikova YA, Biggs LC, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020;181(4):800–817.e22. doi: 10.1016/j.cell.2020.03.052
  • Maeshima K, Ide S, Babokhov M. Dynamic chromatin organization without the 30-nm fiber. Curr Opin Cell Biol [Internet]. 2019;58:95–104. doi: 10.1016/j.ceb.2019.02.003.
  • Stephens AD, Liu PZ, Banigan EJ, et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell [Internet]. 2018;29(2):220–233. doi: 10.1091/mbc.E17-06-0410
  • Booth-Gauthier EA, Alcoser TA, Yang G, et al. Force-induced changes in subnuclear movement and rheology. Biophys J [Internet]. 2012;103(12):2423–2431. doi: 10.1016/j.bpj.2012.10.039
  • Spagnol ST, Dahl KN, Eniola-Adefeso O. Spatially resolved quantification of chromatin condensation through differential local rheology in cell nuclei fluorescence lifetime imaging. PLoS One [InternetAvailable from]. 2016;11(1):e0146244. doi: 10.1371/journal.pone.0146244.
  • Ghosh S, Seelbinder B, Henderson JT, et al. Deformation microscopy for dynamic intracellular and intranuclear mapping of mechanics with high spatiotemporal resolution. Cell Rep [Internet]. 2019;27(5):1607–1620.e4. doi: 10.1016/j.celrep.2019.04.009
  • Schreiner SM, Koo PK, Zhao Y, et al. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Commun [Internet]. 2015;6(1):7159. doi: 10.1038/ncomms8159
  • Chang C-J, Goulding S, Earnshaw WC, et al. Rnai analysis reveals an unexpected role for topoisomerase II in chromosome arm congression to a metaphase plate. J Cell Sci [Internet]. 2003;116(23):4715–4726. doi: 10.1242/jcs.00797
  • Hagstrom KA, Holmes VF, Cozzarelli NR, et al. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. [Internet]. 2002;16(6):729–742. http://genesdev.cshlp.org/content/16/6/729.abstract
  • Hudson DF, Vagnarelli P, Gassmann R, et al. Condensin is required for Nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell [Internet]. 2003;5(2):323–336. doi: 10.1016/S1534-5807(03)00199-0
  • Mikhailov A, Shinohara M, Rieder CL. Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. J Cell Bio [Internet]. 2004;166(4):517–526. doi: 10.1083/jcb.200405167.
  • Abe S, Nagasaka K, Hirayama Y, et al. The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev. 2011;25(8):863–874. doi: 10.1101/gad.2016411
  • Kagami Y, Ono M, Yoshida K. Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Sci Rep [Internet]. 2017;7(1):5583. doi: 10.1038/s41598-017-05986-7.
  • Green LC, Kalitsis P, Chang TM, et al. Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci [Internet]. 2012;125:1591–1604. doi: 10.1242/jcs.097790
  • Johansen KM, Johansen J. Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosom Res [Internet]. 2006;14(4):393–404. doi: 10.1007/s10577-006-1063-4.
  • Wilkins BJ, Rall NA, Ostwal Y, et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science [Internet]. 2014;343(6166):77–80. doi: 10.1126/science.1244508
  • Zhiteneva A, Bonfiglio JJ, Makarov A, et al. Mitotic post-translational modifications of histones promote chromatin compaction in vitro. Open Biol [Internet]. 2017;7(9):170076. doi: 10.1098/rsob.170076
  • Houlard M, Godwin J, Metson J, et al. Condensin confers the longitudinal rigidity of chromosomes. Nat Cell Biol [Internet]. 2015;17(6):771–781. doi: 10.1038/ncb3167
  • Meijering AEC, Sarlós K, Nielsen CF, et al. Nonlinear mechanics of human mitotic chromosomes. Nature [Internet]. 2022;605(7910):545–550. doi: 10.1038/s41586-022-04666-5
  • Poirier MG, Eroglu S, Marko JF, et al. The bending rigidity of mitotic chromosomes. Mol Biol Cell [Internet]. 2002;13(6):2170–2179. doi: 10.1091/mbc.01-08-0401
  • Introini V, Kidiyoor GR, Porcella G, et al. Centripetal nuclear shape fluctuations associate with chromatin condensation in early prophase. Commun Biol [Internet]. 2023;6(1):715. doi: 10.1038/s42003-023-05074-9
  • Cross MK, Powers MA, Zheng Y. Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK. Mol Biol Cell [Internet]. 2011;22(5):661–672. doi: 10.1091/mbc.e10-06-0478.
  • Haraguchi T, Koujin T, Segura-Totten M, et al. BAF is required for emerin assembly into the reforming nuclear envelope. J Cell Sci [Internet]. 2001;114(24):4575–4585. http://jcs.biologists.org/content/114/24/4575.abstract