849
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Running the gauntlet: challenges to genome integrity in spermiogenesis

ORCID Icon & ORCID Icon
Article: 2339220 | Received 23 Feb 2024, Accepted 02 Apr 2024, Published online: 09 Apr 2024

References

  • Cooper TG, Noonan E, von Eckardstein S, et al. World Health Organization reference values for human semen characteristics. Human Reproduction Update. 2010;16(3):231–12. doi: 10.1093/humupd/dmp048
  • Manier MK, Belote JM, Berben KS, et al. Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science. 2010;328(5976):354–357. doi: 10.1126/science.1187096
  • Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies. Biol Reprod. 2023;108(4):538–552. doi: 10.1093/biolre/ioac224
  • Alavioon G, Hotzy C, Nakhro K, et al. Haploid selection within a single ejaculate increases offspring fitness. Proc Natl Acad Sci U S A. 2017;114(30):8053–8058. doi: 10.1073/pnas.1705601114
  • Fuller MT. Spermatogenesis. In: Bate M, and Martinez-Arias A, editors The development of Drosophila. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993. pp. 71–147.
  • Griswold MD. Spermatogenesis: the commitment to meiosis. Physiol Rev. 2016;96(1):1–17. doi: 10.1152/physrev.00013.2015
  • Fabian L, Brill JA. Drosophila spermiogenesis. Spermatogenesis. 2012;2(3):197–212. doi: 10.4161/spmg.21798
  • Lindsley DL, Tokuyasu KT. Spermatogenesis. In: Ashburner M, and Wright TRF, editors Genetics and biology of Drosophila. New York: Academic; 1980. pp. 225–294.
  • Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl. 2008;29(5):469–487. doi: 10.2164/jandrol.107.004655
  • Chandley AC, Bateman AJ. Timing of spermatogenesis in Drosophila melanogaster using Tritiated Thymidine. Nature. 1962;193(4812):299–300. doi: 10.1038/193299b0
  • Haber JE. Partners and pathways. Trends Genet. 2000;16(6):259–264. doi: 10.1016/S0168-9525(00)02022-9
  • Rathke C, Baarends WM, Awe S, et al. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta – Genet Regul Mech. 2014;1839(3):155–168. doi: 10.1016/j.bbagrm.2013.08.004
  • White-Cooper H. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction. 2010;139(1):11–21. doi: 10.1530/REP-09-0083
  • Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis: new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70(4):910–918. doi: 10.1095/biolreprod.103.022541
  • Heller CG, Clermont Y. Spermatogenesis in man: an estimate of its duration. Science. 1963;140(3563):184–186. doi: 10.1126/science.140.3563.184
  • Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100(5):1180–1186. doi: 10.1016/j.fertnstert.2013.08.010
  • Edwards RG, Sirlin JL. The effect of 200r of X-rays on the rate of spermatogenesis and spermiogenesis in the mouse. Exp Cell Res. 1958;15(3):522–528. doi: 10.1016/0014-4827(58)90100-9
  • Oakberg EF. Sensitivity and time of degeneration of spermatogenic cells irradiated in various stages of maturation in the mouse. Radiat Res. 1955;2(4):369–391. doi: 10.2307/3570245
  • Costabile RA. The effects of cancer and cancer therapy on male reproductive function. J Urol. 1993;149(5 Part 2):1327–1330. doi: 10.1016/S0022-5347(17)36384-X
  • Lu KL, Yamashita YM. Germ cell connectivity enhances cell death in response to DNA damage in the Drosophila testis. Elife. 2017;6:1–16. doi: 10.7554/eLife.27960
  • Van Daal A, Elgin SCR. A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell. 1992;3(6):593–602. doi: 10.1091/mbc.3.6.593
  • Madigan JP, Chotkowski HL, Glaser RL. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res. 2002;30(17):3698–3705. doi: 10.1093/nar/gkf496
  • Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–5868. doi: 10.1074/jbc.273.10.5858
  • Ahmed EA, Sfeir A, Takai H, et al. Ku70 and non-homologous end joining protect testicular cells from DNA damage. J Cell Sci. 2013;126(14):3095–3104. doi: 10.1242/jcs.122788
  • Rübe CE, Zhang S, Miebach N, et al. Protecting the heritable genome: DNA damage response mechanisms in spermatogonial stem cells. DNA Repair. 2011;10(2):159–168. doi: 10.1016/j.dnarep.2010.10.007
  • Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair. 2022;118:103386. doi: 10.1016/j.dnarep.2022.103386
  • Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283(1):1–5. doi: 10.1074/jbc.R700039200
  • Raz AA, Vida GS, Stern SR, et al. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. Elife. 2023;12:e82201. doi: 10.7554/eLife.82201
  • Guo M, Luo C, Wang Z, et al. Uncoupling transcription and translation through miRNA-dependent poly(A) length control in haploid male germ cells. Dev. 2022;149(12). doi: 10.1242/dev.199573
  • Kleene KC. Poly(A) shortening accompanies the activation of translation of five mRnas during spermiogenesis in the mouse. Development. 1989;106(2):367–373. doi: 10.1242/dev.106.2.367
  • Barreau C, Benson E, Gudmannsdottir E, et al. Post-meiotic transcription in Drosophila testes. Development. 2008;135(11):1897–1902. doi: 10.1242/dev.021949
  • Jayaramaiah Raja S, Renkawitz-Pohl R. Replacement by Drosophila melanogaster protamines and Mst77F of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol Cell Biol. 2006;26:3682–3682. doi: 10.1128/MCB.26.9.3682.2006
  • Sancar A, Lindsey-Boltz LA, K Ü-K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73(1):39–85. doi: 10.1146/annurev.biochem.73.011303.073723
  • Tokuyasu KT. Dynamics of spermiogenesis in Drosophila melanogaster. IV. Nuclear Transformation. J Ultrastruct Res. 1974;48(2):284–303. doi: 10.1016/S0022-5320(75)90013-1
  • Wu S-F, Zhang H, Cairns BR. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 2011;21(4):578–589. doi: 10.1101/gr.113167.110
  • Török A, Schiffer PH, Schnitzler CE, et al. The cnidarian Hydractinia echinata employs canonical and highly adapted histones to pack its DNA. Epigenet Chromatin. 2016;9(1):36. doi: 10.1186/s13072-016-0085-1
  • Török A, Browne MJG, Vilar JC, et al. Hydrozoan sperm-specific SPKK motif-containing histone H2B variants stabilise chromatin with limited compaction. Development. 2023;150(1). doi: 10.1242/dev.201058
  • Hud NV, Allen MJ, Downing KH, et al. Identification of the elemental packing unit of DNA in Mammalian Sperm Cells by atomic force microscopy. Biochem Biophys Res Commun. 1993;193(3):1347–1354. doi: 10.1006/bbrc.1993.1773
  • Brewer LR, Corzett M, Balhorn R. Protamine-induced condensation and decondensation of the same DNA molecule. Science. 1999;286(5437):120–123. doi: 10.1126/science.286.5437.120
  • Rathke C, Baarends WM, Jayaramaiah-Raja S, et al. Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci. 2007;120(9):1689–1700. doi: 10.1242/jcs.004663
  • Moritz L, Hammoud SS. The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. Front Endocrinol. 2022;13:1–11. doi: 10.3389/fendo.2022.895502
  • Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–36. doi: 10.1093/molehr/gap080
  • Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227. doi: 10.1186/gb-2007-8-9-227
  • Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389(6648):251–260. doi: 10.1038/38444
  • Hammoud SS, Nix DA, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–478. doi: 10.1038/nature08162
  • Raychaudhuri N, Dubruille R, Orsi GA, et al. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol. 2012;10(12):e1001434. doi: 10.1371/journal.pbio.1001434
  • Chang C-H, Natividad IM, Malik HS. Genetic conflicts between sex chromosomes drive expansion and loss of sperm nuclear basic protein genes in Drosophila. Elife. 2023;12:e85249. doi: 10.7554/eLife.85249
  • Tirmarche S, Kimura S, Sapey-Triomphe L, et al. Drosophila protamine-like Mst35ba and Mst35bb are required for proper sperm nuclear morphology but are dispensable for male fertility. G3 Genes, Genomes, Genet. 2014;4(11):2241–2245. doi: 10.1534/g3.114.012724
  • Kimura S, Loppin B. The Drosophila chromosomal protein Mst77F is processed to generate an essential component of mature sperm chromatin. Open Biol. 2016;6(11):160207. doi: 10.1098/rsob.160207
  • Cho C, Willis WD, Goulding EH, et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet. 2001;28(1):82–86. doi: 10.1038/ng0501-82
  • Aoki VW, Liu L, Jones KP, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86(5):1408–1415. doi: 10.1016/j.fertnstert.2006.04.024
  • Cho C, Jung-Ha H, Willis WD, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211–217. doi: 10.1095/biolreprod.102.015115
  • Yelick PC, Balhorn R, Johnson PA, et al. Mouse Protamine 2 Is Synthesized as a Precursor whereas Mouse Protamine 1 Is Not. Mol Cell Biol. 1987;7(6):2173–2179. doi: 10.1128/MCB.7.6.2173
  • Arévalo L, Merges GE, Schneider S, et al. Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice. PLoS Genet. 2022;18(6):e1010272. doi: 10.1371/journal.pgen.1010272
  • Moritz L, Schon SB, Rabbani M, et al. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1. Nat Struct Mol Biol. 2023;30(8):1077–1091. doi: 10.1038/s41594-023-01033-4
  • Akematsu T, Fukuda Y, Garg J, et al. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. Elife. 2017;6:1–26. doi: 10.7554/eLife.26176
  • Leduc F, Maquennehan V, Nkoma GB, et al. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod. 2008;78(2):324–332. doi: 10.1095/biolreprod.107.064162
  • Grégoire MC, Leduc F, Morin MH, et al. The DNA double-strand “breakome” of mouse spermatids. Cell Mol Life Sci. 2018;75(15):2859–2872. doi: 10.1007/s00018-018-2769-0
  • Laberge R-M, Boissonneault G. On the nature and origin of DNA strand breaks in elongating Spermatids1. Biol Reprod. 2005;73(2):289–296. doi: 10.1095/biolreprod.104.036939
  • Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70(1):369–413. doi: 10.1146/annurev.biochem.70.1.369
  • Pommier Y, Sun Y, Huang SN, et al. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol. 2016;17(11):703–721. doi: 10.1038/nrm.2016.111
  • Caron N, Veilleux S, Boissonneault G. Stimulation of DNA repair by the spermatidal TP1 protein. Mol Reprod Dev. 2001;58(4):437–443. doi: 10.1002/1098-2795(20010401)58:4<437:AID-MRD12>3.0.CO;2-Q
  • Boissonneault G. Chromatin remodeling during spermiogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett. 2002;514(2–3):111–114. doi: 10.1016/S0014-5793(02)02380-3
  • Wang S, Meyer DH, Schumacher B. Inheritance of paternal DNA damage by histone-mediated repair restriction. Nature. 2023;613(7943):365–374. doi: 10.1038/s41586-022-05544-w
  • Chu DS, Liu H, Nix P, et al. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature. 2006;443(7107):101–105. doi: 10.1038/nature05050
  • Samson M, Jow MM, Wong CCL, et al. The Specification and Global Reprogramming of Histone Epigenetic Marks during Gamete Formation and Early Embryo Development in C. elegans. PLoS Genet. 2014;10(10):17–21. doi: 10.1371/journal.pgen.1004588
  • Titen SWA, Lin HC, Bhandari J, et al. Chk2 and P53 Regulate the Transmission of Healed Chromosomes in the Drosophila male germline. PLoS Genet. 2014;10(2):e1004130. doi: 10.1371/journal.pgen.1004130
  • Aoki VW, Moskovtsev SI, Willis J, et al. DNA integrity is compromised in Protamine‐Deficient human sperm. J Androl. 2005;26(6):741–748. doi: 10.2164/jandrol.05063
  • Burden F, Ellis PJI, Farre M. A shared ‘vulnerability code’ underpins varying sources of DNA damage throughout paternal germline transmission in mouse. Nucleic Acids Res. 2023;51(5):2319–2332. doi: 10.1093/nar/gkad089
  • Palazzo AF, Gregory TR, Akey JM. The case for junk DNA. PLoS Genet. 2014;10(5):e1004351. doi: 10.1371/journal.pgen.1004351
  • Sinai MIT, Salamon A, Stanleigh N, et al. AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Res. 2019;47(18):9685–9695. doi: 10.1093/NAR/GKZ689
  • Brewer L, Corzett M, Lau EY, et al. Dynamics of Protamine 1 binding to single DNA molecules. J Biol Chem. 2003;278(43):42403–42408. doi: 10.1074/jbc.M303610200
  • Balhorn R. A model for the structure of chromatin in mammalian sperm. J Cell Bio. 1982;93(2):298–305. doi: 10.1083/jcb.93.2.298
  • Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371(6494):215–220. doi: 10.1038/371215a0
  • Henikoff S, Ahmad K, Malik HS. The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science. 2001;293(5532):1098–1102. doi: 10.1126/science.1062939
  • Brand CL, Levine MT. Functional diversification of chromatin on rapid evolutionary timescales. Ann Rev Genet. 2021;55(1):401–425. doi: 10.1146/annurev-genet-071719-020301
  • Sandler L, Novitski E. Meiotic drive as an evolutionary force. Am Nat. 1957;91(857):105–110. doi: 10.1086/281969
  • Tao Y, Masly JP, Araripe L, et al. A sex-ratio meiotic drive system in Drosophila simulans. I: an autosomal suppressor. PLoS Biol. 2007;5(11):2560–2575. doi: 10.1371/journal.pbio.0050292
  • Tao Y, Araripe L, Kingan SB, et al. A sex-ratio meiotic drive system in Drosophila simulans. II: an X-linked distorter. PLoS Biol. 2007;5(11):2576–2588. doi: 10.1371/journal.pbio.0050293
  • Vedanayagam J, Herbette M, Mudgett H, et al. Essential and recurrent roles for hairpin RNAs in silencing de novo sex chromosome conflict in Drosophila simulans. PLoS Biol. 2023;21(6):1–23. doi: 10.1371/journal.pbio.3002136
  • Vedanayagam J, Lin CJ, Lai EC. Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors. Nat Ecol Evol. 2021;5(12):1613–1623. doi: 10.1038/s41559-021-01592-z
  • Muirhead CA, Presgraves DC. Satellite DNA-mediated diversification of a sex-ratio meiotic drive gene family in Drosophila. Nat Ecol Evol. 2021;5(12):1604–1612. doi: 10.1038/s41559-021-01543-8
  • Doyen CM, Chalkley GE, Voets O, et al. A Testis-Specific Chaperone and the Chromatin Remodeler ISWI Mediate Repackaging of the paternal genome. Cell Rep. 2015;13(7):1310–1318. doi: 10.1016/j.celrep.2015.10.010
  • Krsticevic FJ, Santos HL, Januário S, et al. Functional copies of the Mst77F gene on the Y chromosome of Drosophila melanogaster. Genetics. 2010;184(1):295–307. doi: 10.1534/genetics.109.107516
  • Krsticevic FJ, Schrago CG, Carvalho AB. Long-read single molecule sequencing to resolve tandem gene copies: the Mst77Y region on the Drosophila melanogaster Y chromosome. G3 Genes, Genomes, Genet. 2015;5(6):1145–1150. doi: 10.1534/g3.115.017277
  • Park JI, Bell GW, Yamashita YM. Derepression of Y-linked multicopy protamine-like genes interferes with sperm nuclear compaction in D. melanogaster. Proc Natl Acad Sci. 2023;120(16):2017. doi: 10.1073/pnas.2220576120
  • Wu CI, Lyttle TW, Wu ML, et al. Association between a satellite DNA sequence and the responder of segregation distorter in D. melanogaster. Cell. 1988;54(2):179–189. doi: 10.1016/0092-8674(88)90550-8
  • Larracuente AM, Presgraves DC. The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics. 2012;192(1):33–53. doi: 10.1534/genetics.112.141390
  • Herbette M, Wei X, Chang CH, et al. Distinct spermiogenic phenotypes underlie sperm elimination in the segregation distorter meiotic drive system. PLoS Genet. 2021;17(7):1–26. doi: 10.1371/journal.pgen.1009662
  • Sandler L, Hiraizumi Y, Sandler I. meiotic drive in natural populations of Drosophila melanogaster. i.the cytogenetic basis of segregation-distortion. Genetics. 1959;44(2):233–250. doi: 10.1093/genetics/44.2.233
  • Tokuyasu KT, Peacock WJ, Hardy RW. Dynamics of spermiogenesis in Drosophila melanogaster. VII. Effects of segregation distorter (SD) chromosome. J Ultrastruct Res. 1977;58(1):96–107. doi: 10.1016/S0022-5320(77)80011-7
  • Peacock WJ, Miklos GLG. Meiotic Drive in Drosophila: New Interpretations of the Segregation Distorter and Sex Chromosome Systems. Adv Genet. 1973;17:361–409. doi: 10.1016/S0065-2660(08)60174-1
  • Kettaneh NP, Hartl DL. Histone transition during spermiogenesis is absent in segregation distorter males of Drosophila melanogaster. Science. 1976;193(4257):1020–1021. doi: 10.1126/science.821147
  • Gingell LF, Mclean JR. A protamine knockdown mimics the function of sd in Drosophila melanogaster. G3 Genes, Genomes, Genet. 2020;10(6):2111–2115. doi: 10.1534/g3.120.401307
  • Steinhauer J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. Spermatogenesis. 2015;5(2):1–11. doi: 10.1080/21565562.2015.1041345
  • Courret C, Wei X, Larracuente AM. New perspectives on the causes and consequences of male meiotic drive. Curr Opin Genet Dev. 2023;83:102111. doi: 10.1016/j.gde.2023.102111
  • Steger K, Balhorn R. Sperm nuclear protamines: A checkpoint to control sperm chromatin quality. J Vet Med Ser C Anat Histol Embryol. 2018;47(4):273–279. doi: 10.1111/ahe.12361