589
Views
0
CrossRef citations to date
0
Altmetric
Review

Involvement of paraspeckle components in viral infections

ORCID Icon & ORCID Icon
Article: 2350178 | Received 06 Feb 2024, Accepted 22 Apr 2024, Published online: 08 May 2024

References

  • Fox AH, Lam YW, Leung AK, et al. Paraspeckles: a novel nuclear domain. Curr Biol. 2002;12(1):13–12. doi: 10.1016/S0960-9822(01)00632-7
  • Hirose T, Yamazaki T, Nakagawa S. Molecular anatomy of the architectural NEAT1 noncoding RNA: the domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. Wiley Interdiscip Rev RNA. 2019;10(6):e1545. doi: 10.1002/wrna.1545
  • McCluggage F, Fox AH. Paraspeckle nuclear condensates: global sensors of cell stress? BioEssays. 2021;43(5):2000245. doi: 10.1002/bies.202000245
  • Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res. 2016;44(9):3989–4004. doi: 10.1093/nar/gkw271
  • Shav-Tal Y, Zipori D. PSF and p54nrb/NonO – multi‐functional nuclear proteins. FEBS Lett. 2002;531(2):109–114. doi: 10.1016/S0014-5793(02)03447-6
  • Dong P, Xiong Y, Yue J, et al. Long non-coding RNA NEAT1: a novel target for diagnosis and therapy in human tumors. Front Genet. 2018;9. doi: 10.3389/fgene.2018.00471
  • Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT 1 in carcinogenesis. Mol Oncol. 2019;13(1):46–60. doi: 10.1002/1878-0261.12404
  • Wang Y, Hu S-B, Wang M-R, et al. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat Cell Biol. 2018;20(10):1145–1158. doi: 10.1038/s41556-018-0204-2
  • Azam S, Armijo KS, Weindel CG, et al. The early macrophage response to pathogens requires dynamic regulation of the nuclear paraspeckle. Proc Nat Acad Sci. 2024;121(9). doi: 10.1073/pnas.2312587121
  • Chen LL, Carmichael GG. Altered nuclear retention of mRnas containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell. 2009;35(4):467–478. doi: 10.1016/j.molcel.2009.06.027
  • Prasanth KV, Prasanth SG, Xuan Z, et al. Regulating gene expression through RNA nuclear retention. Cell. 2005;123(2):249–263. doi: 10.1016/j.cell.2005.08.033
  • Zhang Z, Carmichael GG. The fate of dsRNA in the nucleus: a p54nrb-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell. 2001;106(4):465–476. doi: 10.1016/S0092-8674(01)00466-4
  • Chen LL, JN D, Carmichael GG. Alu element-mediated gene silencing. Embo J. 2008;27(12):1694–1705. doi: 10.1038/emboj.2008.94
  • Fortes P, Morris KV. Long noncoding RNAs in viral infections. Virus Res. 2016;212:1–11. doi: 10.1016/j.virusres.2015.10.002
  • Ghafouri-Fard S, Hussen BM, Jamal HH, et al. The emerging role of non-coding RNAs in the regulation of virus replication and resultant cellular pathologies. Int J Mol Sci. 2022;23(2):815. doi: 10.3390/ijms23020815
  • Damas ND, Fossat N, Scheel TKH. Functional interplay between RNA viruses and non-coding RNA in mammals. Noncoding RNA. 2019;5(1):7. doi: 10.3390/ncrna5010007
  • Liu S, Liu X, Li J, et al. Long noncoding RNAs: novel regulators of virus-host interactions. Rev Med Virol. 2019;29(4):e2046. doi: 10.1002/rmv.2046
  • Wang P. The opening of Pandora’s box: an emerging role of long noncoding RNA in viral infections. Front Immunol. 2018;9:3138. doi: 10.3389/fimmu.2018.03138
  • Orly J, Yul BJ-F, Gopinath S, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743–754. doi: 10.1016/j.cell.2013.01.015
  • Imam H, Bano AS, Patel P, et al. The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci Rep. 2015;5(1):8639. doi: 10.1038/srep08639
  • Romanchikova N, Ivanova V, Scheller C, et al. NFAT transcription factors control HIV-1 expression through a binding site downstream of TAR region. Immunobiology. 2003;208(4):361–365. doi: 10.1078/0171-2985-00283
  • Saha S, Murthy S, Rangarajan PN. Identification and characterization of a virus-inducible non-coding RNA in mouse brain. J Gen Virol. 2006;87(7):1991–1995. doi: 10.1099/vir.0.81768-0
  • Naganuma T, Hirose T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol. 2013;10(3):456–461. doi: 10.4161/rna.23547
  • Sunwoo H, Dinger ME, Wilusz JE, et al. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 2009;19(3):347–359. doi: 10.1101/gr.087775.108
  • Naganuma T, Nakagawa S, Tanigawa A, et al. Alternative 3’-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. Embo J. 2012;31(20):4020–4034. doi: 10.1038/emboj.2012.251
  • Sasaki YT, Ideue T, Sano M, et al. Menepsilon/Beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A. 2009;106(8):2525–2530. doi: 10.1073/pnas.0807899106
  • Chujo T, Yamazaki T, Kawaguchi T, et al. Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. Embo J. 2017;36(10):1447–1462. doi: 10.15252/embj.201695848
  • West JA, Mito M, Kurosaka S, et al. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol. 2016;214(7):817–830. doi: 10.1083/jcb.201601071
  • Dettwiler S, Aringhieri C, Cardinale S, et al. Distinct sequence motifs within the 68-kDa subunit of cleavage factor im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem. 2004;279(34):35788–35797. doi: 10.1074/jbc.M403927200
  • Hirose T, Virnicchi G, Tanigawa A, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell. 2014;25(1):169–183. doi: 10.1091/mbc.e13-09-0558
  • Imamura K, Imamachi N, Akizuki G, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Molecular Cell. 2014;53(3):393–406. doi: 10.1016/j.molcel.2014.01.009
  • Ahmed ASI, Dong K, Liu J, et al. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci U S A. 2018;115(37):E8660–e7. doi: 10.1073/pnas.1803725115
  • Koyama S, Ishii KJ, Coban C, et al. Innate immune response to viral infection. Cytokine. 2008;43(3):336–341. doi: 10.1016/j.cyto.2008.07.009
  • Zhou B, Wu F, Han J, et al. Exploitation of nuclear protein SFPQ by the encephalomyocarditis virus to facilitate its replication. Biochem Biophys Res Commun. 2019;510(1):65–71. doi: 10.1016/j.bbrc.2019.01.032
  • Lenarcic EM, Landry DM, Greco TM, et al. Thiouracil cross-linking mass spectrometry: a cell-based method to identify host factors involved in viral amplification. J Virol. 2013;87(15):8697–8712. doi: 10.1128/JVI.00950-13
  • Dave P, George B, Sharma DK, et al. Polypyrimidine tract-binding protein (PTB) and PTB-associated splicing factor in CVB3 infection: an ITAF for an ITAF. Nucleic Acids Res. 2017;45(15):9068–9084. doi: 10.1093/nar/gkx519
  • Flather D, Nguyen JHC, Semler BL, et al. Exploitation of nuclear functions by human rhinovirus, a cytoplasmic RNA virus. PLOS Pathog. 2018;14(8):e1007277. doi: 10.1371/journal.ppat.1007277
  • Pandey AD, Goswami S, Shukla S, et al. Correlation of altered expression of a long non-coding RNA, NEAT1, in peripheral blood mononuclear cells with dengue disease progression. J Infect. 2017;75(6):541–554. doi: 10.1016/j.jinf.2017.09.016
  • Ramaiah A, Contreras D, Gangalapudi V, et al. Dysregulation of long non-coding RNA (lncRNA) genes and predicted lncRNA-protein interactions during zika virus infection. bioRxiv. 2016;061788. doi: 10.1101/061788
  • Labeau A, Fery-Simonian L, Lefevre-Utile A, et al. Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Rep. 2022;39(4):110744. doi: 10.1016/j.celrep.2022.110744
  • Girardi E, Messmer M, Lopez P, et al. Proteomics-based determination of double-stranded RNA interactome reveals known and new factors involved in sindbis virus infection. RNA. 2023;29(3):361–375. doi: 10.1261/rna.079270.122
  • Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, et al. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLOS Pathog. 2011;7(11):e1002397. doi: 10.1371/journal.ppat.1002397
  • Beyleveld G, Chin DJ, Moreno Del Olmo E, et al. Nucleolar relocalization of RBM14 by influenza a virus NS1 protein. mSphere. 2018;3(6). doi: 10.1128/mSphereDirect.00549-18
  • Ma H, Han P, Ye W, et al. The long noncoding RNA NEAT1 exerts antihantaviral effects by acting as positive feedback for RIG-I signaling. J Virol. 2017;91(9):JVI.02250–16. doi: 10.1128/JVI.02250-16
  • Beeharry Y, Goodrum G, Imperiale CJ, et al. The hepatitis delta virus accumulation requires paraspeckle components and affects NEAT1 level and PSP1 localization. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-24500-1
  • Greco-Stewart VS, Thibault CS, Pelchat M. Binding of the polypyrimidine tract-binding protein-associated splicing factor (PSF) to the hepatitis delta virus RNA. Virology. 2006;356(1–2):35–44. doi: 10.1016/j.virol.2006.06.040
  • Sikora D, Greco-Stewart VS, Miron P, et al. The hepatitis delta virus RNA genome interacts with eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology. 2009;390(1):71–78. doi: 10.1016/j.virol.2009.04.022
  • Greco-Stewart VS, Miron P, Abrahem A, et al. The human RNA polymerase II interacts with the terminal stem-loop regions of the hepatitis delta virus RNA genome. Virology. 2007;357(1):68–78. doi: 10.1016/j.virol.2006.08.010
  • Shadrina OA, Kikhay TF, Agapkina YY, et al. SFPQ and NONO Proteins and long non-coding NEAT1 RNA: cellular functions and role in the HIV-1 life cycle. Mol Biol. 2022;56(2):196–209. doi: 10.1134/S0026893322020133
  • Wang Z, Fan P, Zhao Y, et al. NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription. Cell Mol Life Sci. 2017;74(6):1117–1131. doi: 10.1007/s00018-016-2398-4
  • Lee N, Yario TA, Gao JS, Steitz JA. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. 2016. p. 3221–3226. Proc Natl Acad Sci. 113(12).
  • Jiang D, Jiang C, Sui C, et al. Swine NONO is an essential factor to inhibit pseudorabies virus infection. Vet Microbiol. 2022;275:109582. doi: 10.1016/j.vetmic.2022.109582
  • Oshiumi H, Miyashita M, Okamoto M, et al. DDX60 Is involved in RIG-I-Dependent and Independent antiviral responses, and its function Is attenuated by virus-induced EGFR activation. Cell Rep. 2015;11(8):1193–1207. doi: 10.1016/j.celrep.2015.04.047
  • Godet A-C, David F, Hantelys F, et al. IRES trans-acting factors, key actors of the stress response. Int J Mol Sci. 2019;20(4):924. doi: 10.3390/ijms20040924
  • Ho B-C, Yu S-L, Chen JJW, et al. Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe. 2011;9(1):58–69. doi: 10.1016/j.chom.2010.12.001
  • Pilipenko EV, Pestova TV, Kolupaeva VG, et al. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 2000;14(16):2028–2045. doi: 10.1101/gad.14.16.2028
  • Mitchell SA, Spriggs KA, Bushell M, et al. Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes Dev. 2005;19(13):1556–1571. doi: 10.1101/gad.339105
  • Lizcano-Perret B, Lardinois C, Wavreil F, et al. Cardiovirus leader proteins retarget RSK kinases toward alternative substrates to perturb nucleocytoplasmic traffic. PLOS Pathog. 2022;18(12):e1011042. doi: 10.1371/journal.ppat.1011042
  • Lizcano-Perret B, Michiels T. Nucleocytoplasmic trafficking perturbation induced by Picornaviruses. Viruses. 2021;13(7):1210. doi: 10.3390/v13071210
  • Hanson PJ, Hossain AR, Qiu Y, et al. Cleavage and sub-cellular redistribution of nuclear pore protein 98 by coxsackievirus B3 protease 2A impairs cardioprotection. Front Cell Infect Microbiol. 2019;9. doi: 10.3389/fcimb.2019.00265
  • Jorba N, Juarez S, Torreira E, et al. Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics. 2008;8(10):2077–2088. doi: 10.1002/pmic.200700508
  • Li X, Palese P. Characterization of the polyadenylation signal of influenza virus RNA. J Virol. 1994;68(2):1245–1249. doi: 10.1128/jvi.68.2.1245-1249.1994
  • Lee N, Therese W, Joan. EBV noncoding RNA binds nascent RNA to drive Host PAX5 to viral DNA. Cell. 2015;160(4):607–618. doi: 10.1016/j.cell.2015.01.015
  • Morchikh M, Cribier A, Raffel R, et al. HEXIM1 and NEAT1 long non-coding RNA form a multi-subunit complex that regulates DNA-Mediated innate immune response. Molecular Cell. 2017;67(3):387–99.e5. doi: 10.1016/j.molcel.2017.06.020
  • Viollet C, Davis DA, Tekeste SS, et al. RNA sequencing reveals that Kaposi sarcoma-associated herpesvirus infection mimics hypoxia gene expression signature. PLOS Pathog. 2017;13(1):e1006143. doi: 10.1371/journal.ppat.1006143
  • An H, Tan JT, Shelkovnikova TA. Stress granules regulate stress-induced paraspeckle assembly. J Cell Bio. 2019;218(12):4127–4140. doi: 10.1083/jcb.201904098
  • Tayel SI, EA E-M, Abdelaal GA, et al. Interplay of LncRNAs NEAT1 and TUG1 in incidence of cytokine storm in appraisal of COVID-19 infection. Int J Biol Sci. 2022;18(13):4901–4913. doi: 10.7150/ijbs.72318
  • Huang K, Wang C, Vagts C, et al. Long non-coding RNAs (lncRnas) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: an integrated single-cell analysis. PLOS ONE. 2022;17(1):e0261242. doi: 10.1371/journal.pone.0261242
  • Meydan C, Madrer N, Soreq H. The neat dance of COVID-19: NEAT1, DANCR, and Co-modulated cholinergic RNAs link to inflammation. Front Immunol. 2020;11:11. doi: 10.3389/fimmu.2020.590870